cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251568 Expansion of e.g.f. exp(x*C(x)^2) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 5, 43, 529, 8501, 169021, 4010455, 110676833, 3484717129, 123320412181, 4847038223171, 209536628422705, 9882471447634813, 505033804901100749, 27802319803528367791, 1640388588050579832001, 103275015543414629215505, 6910877628962983581031333
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 529*x^4/4! + 8501*x^5/5! + ...
where
log(A(x)) = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + ... + A000108(n)*x^n + ...
		

Crossrefs

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n,n)/(n+1):
    a := n -> `if`(n=0, 1, n!*CatalanNumber(n)*hypergeom([1-n], [2+n], -1)):
    seq(simplify(a(n)), n=0..9); # Peter Luschny, May 04 2017
  • Mathematica
    Flatten[{1,Table[Sum[n!/k!*Binomial[2*n-1,n-k]*2*k/(n+k),{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 14 2015 *)
    a[0] = 1; a[n_] := (2n)!/(n+1)! Hypergeometric1F1[1-n, n+2, -1];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 03 2017, after Vladimir Kruchinin *)
  • PARI
    {a(n)=my(C=1);for(i=1,n,C=1+x*C^2 +x*O(x^n));n!*polcoef(exp(x*C^2),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, n!/k! * binomial(2*n-1, n-k) * 2*k/(n+k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^2/x))) \\ Seiichi Manyama, Mar 15 2025

Formula

a(n) = Sum_{k=0..n} (n!/k!) * binomial(2*n-1, n-k) * 2*k/(n+k) for n > 0 with a(0)=1.
E.g.f. A(x) satisfies: A'(x)/A(x) = C'(x) = C(x)^2 / sqrt(1-4*x) where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
Recurrence equation: a(n) = -(n^2 - 5*n +1)*a(n-1) + n*(2*n - 3)*(2*n - 4)*a(n-2) with a(0) = 1, a(1) = 1. It appears that a(n) - 1 is divisible by n*(n - 1) for n >= 2. - Peter Bala, Feb 14 2015
a(n) ~ 2^(2*n+1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Feb 14 2015
a(n) are special values of the hypergeometric function 1F1: a(n) = 4^n*Gamma(n+1/2)*exp(-1)*hypergeom([2*n+1], [n+2], 1)/(sqrt(Pi)*(n+1)), for n>=1. - Karol A. Penson, Jun 01 2015
a(n) = ((2*n)!/(n+1)!)*hypergeometric([1-n],[n+2],-1), a(0)=1. - Vladimir Kruchinin, May 03 2017
From Seiichi Manyama, Mar 15 2025: (Start)
E.g.f.: exp( (1/x) * Series_Reversion( x*(1-x) )^2 ).
E.g.f.: exp( Series_Reversion( x/(1+x)^2 ) ). (End)