cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A243953 E.g.f.: exp( Sum_{n>=1} A000108(n-1)*x^n/n ), where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.

Original entry on oeis.org

1, 1, 2, 8, 56, 592, 8512, 155584, 3456896, 90501632, 2728876544, 93143809024, 3550380249088, 149488545697792, 6890674623094784, 345131685337530368, 18664673706719019008, 1083931601731053223936, 67278418002152175960064, 4444711314548967826259968
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 56*x^4/4! + 592*x^5/5! + 8512*x^6/6! +...
such that the logarithmic derivative of the e.g.f. equals the Catalan numbers:
log(A(x)) = x + x^2/2 + 2*x^3/3 + 5*x^4/4 + 14*x^5/5 + 42*x^6/6 + 132*x^7/7 + 429*x^8/8 +...+ A000108(n-1)*x^n/n +...
thus A'(x)/A(x) = C(x) where C(x) = 1 + x*C(x)^2.
Also, e.g.f. A(x) satisfies:
A(x) = 1 + x/A(x) + 4*(x/A(x))^2/2! + 32*(x/A(x))^3/3! + 400*(x/A(x))^4/4! + 6912*(x/A(x))^5/5! +...+ (n+1)^(n-2)*2^n*(x/A(x))^n/n! +...
If we form a table of coefficients of x^k/k! in A(x)^n, like so:
[1, 1,  2,    8,    56,    592,    8512,   155584,    3456896, ...];
[1, 2,  6,   28,   200,   2064,   28768,   511424,   11106432, ...];
[1, 3, 12,   66,   504,   5256,   72288,  1259712,   26822016, ...];
[1, 4, 20,  128,  1064,  11488,  158752,  2740480,   57517184, ...];
[1, 5, 30,  220,  2000,  22680,  319600,  5525600,  115094400, ...];
[1, 6, 42,  348,  3456,  41472,  602352, 10533024,  219321216, ...];
[1, 7, 56,  518,  5600,  71344, 1075648, 19176304,  401916032, ...];
[1, 8, 72,  736,  8624, 116736, 1835008, 33554432,  712166016, ...];
[1, 9, 90, 1008, 12744, 183168, 3009312, 56687040, 1224440064, ...]; ...
then the main diagonal equals (n+1)^(n-1) * 2^n for n>=0:
[1, 2, 12, 128, 2000, 41472, 1075648, 33554432, 1224440064, ...].
Note that Sum_{n>=0} (n+1)^(n-2) * 2^n * x^n/n! is an e.g.f. of A127670.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(1 - Sqrt[1-4*x]) * (1 + Sqrt[1-4*x])/2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 22 2014 *)
  • Maxima
    a(n):=if n=0 then 1 else sum((n-1)!/(n-i-1)!*binomial(2*i,i)/(i+1)*a(n-i-1),i,0,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
  • PARI
    /* Explicit formula: */
    {a(n)=n!*polcoeff( exp(1-sqrt(1-4*x +x*O(x^n))) * (1 + sqrt(1-4*x +x*O(x^n)))/2,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Logarithmic derivative of e.g.f. equals Catalan numbers: */
    {A000108(n) = binomial(2*n,n)/(n+1)}
    {a(n)=n!*polcoeff( exp(sum(m=1,n, A000108(m-1)*x^m/m)+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* From [x^n/n!] A(x)^(n+1) = (n+1)^(n-1)*2^n */
    {a(n)=n!*polcoeff(x/serreverse(x*sum(m=0, n+1, (m+1)^(m-2)*(2*x)^m/m!)+x^2*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))
    

Formula

E.g.f. A(x) satisfies:
(1) A(x) = exp(1 - sqrt(1-4*x)) * (1 + sqrt(1-4*x))/2.
(2) A(x)^2 - A(x)*A'(x) + x*A'(x)^2 = 0 (differential equation).
(3) [x^n/n!] A(x)^(n+1) = (n+1)^(n-1)*2^n for n>=0.
(4) A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^(n-2)*2^n*x^n/n!.
(5) A(x) = x / Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^(n-2)*2^n*x^n/n!.
(6) x = -LambertW(-2*x/A(x)) * (2 + LambertW(-2*x/A(x)))/4. [From a formula by Vaclav Kotesovec in A127670]
a(n) ~ 2^(2*n-5/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Jun 22 2014
a(n) = sum(i=0..n-1, (n-1)!/(n-i-1)!*binomial(2*i,i)/(i+1)*a(n-i-1)), a(0)=1. - Vladimir Kruchinin, Feb 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n+2) = 2^(n+1)*A001515(n).
a(n+1) = Sum_{k = 0..n} binomial(n+k-1,2*k)*2^(n-k)*(2*k)!/k!.
D-finite with recurrence a(n) = (4*n - 10)*a(n-1) + 4*a(n-2) with a(0) = a(1) = 1.
The derivative A'(x) of the e.g.f. is equal to exp(2*x*c(x)), that is, A'(x) is the Catalan transform of exp(2*x) as defined in Barry, Section 3. (End)
E.g.f. A(x) satisfies (x/A(x))' = 1/A'(x). - Alexander Burstein, Oct 31 2023

A251573 E.g.f.: exp(3*x*G(x)^2) / G(x)^2 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 3, 21, 261, 4833, 120303, 3778029, 143531433, 6404711553, 328447585179, 19037277446949, 1230842669484717, 87829738967634849, 6856701559496841159, 581343578623728854397, 53196439113856500195537, 5225543459274294130169601, 548468830470032135590262067, 61258398893626609968686844597
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 21*x^3/3! + 261*x^4/4! + 4833*x^5/5! +...
such that A(x) = exp(3*x*G(x)^2) / G(x)^2
where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
The e.g.f. satisfies:
A(x) = 1 + x/A(x) + 5*x^2/(2!*A(x)^2) + 54*x^3/(3!*A(x)^3) + 945*x^4/(4!*A(x)^4) + 23328*x^5/(5!*A(x)^5) + 750141*x^6/(6!*A(x)^6) + 29859840*x^7/(7!*A(x)^7) +...+ 3^(n-1)*(n+1)^(n-3)*(n+3) * x^n/(n!*A(x)^n) +...
Note that
A'(x) = exp(3*x*G(x)^2) = 1 + 3*x + 21*x^2/2! + 261*x^3/3! + 4833*x^4/4! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 2*x^2/2 + 7*x^3/3 + 30*x^4/4 + 143*x^5/5 +...
and so A'(x)/A(x) = G(x)^2.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  3,   21,   261,   4833,  120303,   3778029, ...];
n=2: [1, 2,  8,   60,   744,  13536,  330912,  10232928, ...];
n=3: [1, 3, 15,  123,  1557,  28179,  680427,  20771235, ...];
n=4: [1, 4, 24,  216,  2832,  51552, 1237248,  37404288, ...];
n=5: [1, 5, 35,  345,  4725,  87285, 2094975,  62949825, ...];
n=6: [1, 6, 48,  516,  7416, 139968, 3378528, 101278944, ...];
n=7: [1, 7, 63,  735, 11109, 215271, 5250987, 157613463, ...];
n=8: [1, 8, 80, 1008, 16032, 320064, 7921152, 238878720, ...]; ...
in which the main diagonal begins (see A251583):
[1, 2, 15, 216, 4725, 139968, 5250987, 238878720, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 3^(n-1) * (n+1)^(n-2) * (n+3) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[3^k * n!/k! * Binomial[3*n-k-3, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
    Flatten[{1,1,RecurrenceTable[{27*(n-2)*a[n-2]-3*(3*n-8)*(15-13*n+3*n^2)*a[n-1]+2*(n-3)*(2*n-3)*a[n]==0,a[2]==3,a[3]==21},a,{n,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^3 +x*O(x^n)); n!*polcoeff(exp(3*x*G^2)/G^2, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 3^k * n!/k! * binomial(3*n-k-3,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^3 be the g.f. of A001764, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^2.
(2) A'(x) = exp(3*x*G(x)^2).
(3) A(x) = exp( Integral G(x)^2 dx ).
(4) A(x) = exp( Sum_{n>=1} A006013(n-1)*x^n/n ), where A006013(n-1) = binomial(3*n-2,n)/(2*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251583.
(6) A(x) = Sum_{n>=0} A251583(n)*(x/A(x))^n/n! where A251583(n) = 3^(n-1) * (n+1)^(n-3) * (n+3).
(7) [x^n/n!] A(x)^(n+1) = 3^(n-1) * (n+1)^(n-2) * (n+3).
a(n) = Sum_{k=0..n} 3^k * n!/k! * binomial(3*n-k-3, n-k) * (k-1)/(n-1) for n>1.
Recurrence (for n>3): 2*(n-3)*(2*n-3)*a(n) = 3*(3*n-8)*(3*n^2 - 13*n + 15)*a(n-1) - 27*(n-2)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 3^(3*n-7/2) * n^(n-2) / (2^(2*n-5/2) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

A251664 E.g.f.: exp(4*x*G(x)^3) / G(x) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 3, 26, 430, 10872, 373664, 16295152, 862486944, 53729041280, 3851892172288, 312411790027776, 28284076403710208, 2827642792215049216, 309396856974126428160, 36777992050266076762112, 4719560392385576181243904, 650284066459536965937364992, 95752333835299098922624876544, 15005473998204120386383308390400
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 26*x^2/2! + 430*x^3/3! + 10872*x^4/4! + 373664*x^5/5! +...
such that A(x) = exp(4*x*G(x)^3) / G(x)
where G(x) = 1 + x*G(x)^4 is the g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[4^k * n!/k! * Binomial[4*n-k-2,n-k] * (3*k-1)/(3*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^4 +x*O(x^n)); n!*polcoeff(exp(4*x*G^3)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 4^k * n!/k! * binomial(4*n-k-2,n-k) * (3*k-1)/(3*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^4 be the g.f. of A002293, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^3 + 2*G'(x)/G(x).
(2) A(x) = F(x/A(x)^3) where F(x) is the e.g.f. of A251694.
(3) A(x) = Sum_{n>=0} A251694(n)*(x/A(x)^3)^n/n! where A251694(n) = (2*n+1) * (3*n+1)^(n-2) * 4^n.
(4) [x^n/n!] A(x)^(3*n+1) = (2*n+1) * (3*n+1)^(n-1) * 4^n.
a(n) = Sum_{k=0..n} 4^k * n!/k! * binomial(4*n-k-2,n-k) * (3*k-1)/(3*n-1) for n>=0.
Recurrence: 3*(3*n-2)*(3*n-1)*(64*n^3 - 344*n^2 + 598*n - 315)*a(n) = 8*(2048*n^6 - 16128*n^5 + 51136*n^4 - 82160*n^3 + 67332*n^2 - 22212*n - 855)*a(n-1) + 256*(64*n^3 - 152*n^2 + 102*n + 3)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 2^(8*n-2) / 3^(3*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251665 E.g.f.: exp(5*x*G(x)^4) / G(x) where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.

Original entry on oeis.org

1, 4, 47, 1034, 34349, 1540480, 87311275, 5991370390, 483100288985, 44778459212540, 4691799973171175, 548418557098305250, 70754785462138421125, 9987462340422594014200, 1531136319790275407365475, 253347224928445454055920750, 45001449932636667231257800625, 8541130421294458307989700672500
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 1034*x^3/3! + 34349*x^4/4! + 1540480*x^5/5! +...
such that A(x) = exp(5*x*G(x)^4) / G(x)
where G(x) = 1 + x*G(x)^5 is the g.f. of A002294:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[5^k * n!/k! * Binomial[5*n-k-2,n-k] * (4*k-1)/(4*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^5 +x*O(x^n)); n!*polcoeff(exp(5*x*G^4)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 5^k * n!/k! * binomial(5*n-k-2,n-k) * (4*k-1)/(4*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^4 + 3*G'(x)/G(x).
(2) A(x) = F(x/A(x)^4) where F(x) is the e.g.f. of A251695.
(3) A(x) = Sum_{n>=0} A251695(n)*(x/A(x)^4)^n/n! where A251695(n) = (3*n+1) * (4*n+1)^(n-2) * 5^n .
(4) [x^n/n!] A(x)^(4*n+1) = (3*n+1) * (4*n+1)^(n-1) * 5^n.
a(n) = Sum_{k=0..n} 5^k * n!/k! * binomial(5*n-k-2,n-k) * (4*k-1)/(4*n-1) for n>=0.
Recurrence: 8*(2*n-1)*(4*n-3)*(4*n-1)*(1875*n^4 - 13375*n^3 + 35700*n^2 - 41905*n + 17681)*a(n) = 5*(1171875*n^8 - 11875000*n^7 + 51765625*n^6 - 126596875*n^5 + 189126875*n^4 - 174442875*n^3 + 93137550*n^2 - 22362645*n - 233856)*a(n-1) - 3125*(1875*n^4 - 5875*n^3 + 6825*n^2 - 3130*n - 24)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 3 * 5^(5*n-3/2) / 2^(8*n-1) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251666 E.g.f.: exp(6*x*G(x)^5) / G(x) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 5, 74, 2028, 83352, 4607496, 321156000, 27064420704, 2677510124928, 304299947999232, 39075730095810816, 5595805388119057920, 884245579070535235584, 152843879008651568329728, 28688663318934190485491712, 5811091829207760774331662336, 1263471121829937070180445552640
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 5*x + 74*x^2/2! + 2028*x^3/3! + 83352*x^4/4! + 4607496*x^5/5! +...
such that A(x) = exp(6*x*G(x)^5) / G(x)
where G(x) = 1 + x*G(x)^6 is the g.f. of A002295:
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[6^k * n!/k! * Binomial[6*n-k-2,n-k] * (5*k-1)/(5*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^6 +x*O(x^n)); n!*polcoeff(exp(6*x*G^5)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 6^k * n!/k! * binomial(6*n-k-2,n-k) * (5*k-1)/(5*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^6 be the g.f. of A002295, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^5 + 4*G'(x)/G(x).
(2) A(x) = F(x/A(x)^5) where F(x) is the e.g.f. of A251696.
(3) A(x) = Sum_{n>=0} A251696(n)*(x/A(x)^5)^n/n! where A251696(n) = (4*n+1) * (5*n+1)^(n-2) * 6^n .
(4) [x^n/n!] A(x)^(5*n+1) = (4*n+1) * (5*n+1)^(n-1) * 6^n .
a(n) = Sum_{k=0..n} 6^k * n!/k! * binomial(6*n-k-2,n-k) * (5*k-1)/(5*n-1) for n>=0.
Recurrence: 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*(1296*n^5 - 11394*n^4 + 40230*n^3 - 71274*n^2 + 63110*n - 21963)*a(n) = 144*(419904*n^10 - 5161320*n^9 + 28223964*n^8 - 90513612*n^7 + 188713962*n^6 - 267339204*n^5 + 259905051*n^4 - 169257762*n^3 + 67929146*n^2 - 12957136*n - 43050)*a(n-1) + 46656*(1296*n^5 - 4914*n^4 + 7614*n^3 - 5988*n^2 + 2156*n + 5)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 4 * 6^(6*n-3/2) / 5^(5*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251667 E.g.f.: exp(7*x*G(x)^6) / G(x) where G(x) = 1 + x*G(x)^7 is the g.f. of A002296.

Original entry on oeis.org

1, 6, 107, 3508, 171741, 11280842, 933014767, 93212094024, 10925496633401, 1470493880790382, 223555405538724819, 37892802280129883324, 7086076189702624109653, 1449303152891376476830962, 321848482510755456019058519, 77124029495405859198280522768
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 6*x + 107*x^2/2! + 3508*x^3/3! + 171741*x^4/4! + 11280842*x^5/5! +...
such that A(x) = exp(7*x*G(x)^6) / G(x)
where G(x) = 1 + x*G(x)^7 is the g.f. of A002296:
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[7^k * n!/k! * Binomial[7*n-k-2,n-k] * (6*k-1)/(6*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^7 +x*O(x^n)); n!*polcoeff(exp(7*x*G^6)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 7^k * n!/k! * binomial(7*n-k-2,n-k) * (6*k-1)/(6*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^6 + 5*G'(x)/G(x).
(2) A(x) = F(x/A(x)^6) where F(x) is the e.g.f. of A251697.
(3) A(x) = Sum_{n>=0} A251697(n)*(x/A(x)^6)^n/n! where A251697(n) = (5*n+1) * (6*n+1)^(n-2) * 7^n .
(4) [x^n/n!] A(x)^(6*n+1) = (5*n+1) * (6*n+1)^(n-1) * 7^n .
a(n) = Sum_{k=0..n} 7^k * n!/k! * binomial(7*n-k-2,n-k) * (6*k-1)/(6*n-1) for n>=0.
Recurrence: 72*(2*n-1)*(3*n-2)*(3*n-1)*(6*n-5)*(6*n-1)*(588245*n^6 - 6117748*n^5 + 26651100*n^4 - 62321728*n^3 + 82554122*n^2 - 58646294*n + 17291583)*a(n) = 7*(69206436005*n^12 - 996572678472*n^11 + 6516703994430*n^10 - 25624338676965*n^9 + 67604945463195*n^8 - 126360374558838*n^7 + 171960790012102*n^6 - 171911061779835*n^5 + 125050872537045*n^4 - 63802357502870*n^3 + 20814954345360*n^2 - 3329274812661*n - 3763584000)*a(n-1) - 823543*(588245*n^6 - 2588278*n^5 + 4886035*n^4 - 5129908*n^3 + 3141733*n^2 - 958104*n - 720)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 5 * 7^(7*n-3/2) / 6^(6*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251668 E.g.f.: exp(8*x*G(x)^7) / G(x) where G(x) = 1 + x*G(x)^8 is the g.f. of A007556.

Original entry on oeis.org

1, 7, 146, 5570, 316376, 24070168, 2303562256, 266121810928, 36054510934400, 5607388438811648, 984840629002206464, 192818670654633123328, 41644201910970978233344, 9836055425319263031070720, 2522269785922810486307846144, 697878768774876825573221076992, 207239855326220163290204654895104
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 7*x + 146*x^2/2! + 5570*x^3/3! + 316376*x^4/4! + 24070168*x^5/5! +...
such that A(x) = exp(8*x*G(x)^7) / G(x)
where G(x) = 1 + x*G(x)^8 is the g.f. of A007556:
G(x) = 1 + x + 8*x^2 + 92*x^3 + 1240*x^4 + 18278*x^5 + 285384*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[8^k * n!/k! * Binomial[8*n-k-2,n-k] * (7*k-1)/(7*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^8 +x*O(x^n)); n!*polcoeff(exp(8*x*G^7)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 8^k * n!/k! * binomial(8*n-k-2,n-k) * (7*k-1)/(7*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^8 be the g.f. of A007556, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^7 + 6*G'(x)/G(x).
(2) A(x) = F(x/A(x)^7) where F(x) is the e.g.f. of A251698.
(3) A(x) = Sum_{n>=0} A251698(n)*(x/A(x)^7)^n/n! where A251698(n) = (6*n+1) * (7*n+1)^(n-2) * 8^n.
(4) [x^n/n!] A(x)^(7*n+1) = (6*n+1) * (7*n+1)^(n-1) * 8^n.
a(n) = Sum_{k=0..n} 8^k * n!/k! * binomial(8*n-k-2,n-k) * (7*k-1)/(7*n-1) for n>=0.
Recurrence: 7*(7*n-6)*(7*n-5)*(7*n-4)*(7*n-3)*(7*n-2)*(7*n-1)*(786432*n^7 - 9420800*n^6 + 48617472*n^5 - 140311296*n^4 + 244933664*n^3 - 258931936*n^2 + 153488834*n - 39162055)*a(n) = 128*(103079215104*n^14 - 1698659565568*n^13 + 12890002161664*n^12 - 59777925251072*n^11 + 189611502469120*n^10 - 436161486520320*n^9 + 752457969500160*n^8 - 992208595165184*n^7 + 1008016614120448*n^6 - 786554741352448*n^5 + 462978217009024*n^4 - 196807984954976*n^3 + 54746044352828*n^2 - 7603476442560*n - 3022294275)*a(n-1) + 16777216*(786432*n^7 - 3915776*n^6 + 8607744*n^5 - 11010816*n^4 + 8972320*n^3 - 4620928*n^2 + 1248354*n + 315)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 6 * 8^(8*n-3/2) / 7^(7*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251669 E.g.f.: exp(9*x*G(x)^8) / G(x) where G(x) = 1 + x*G(x)^9 is the g.f. of A062994.

Original entry on oeis.org

1, 8, 191, 8310, 537117, 46444164, 5047987707, 662002733394, 101779688986425, 17959176833948928, 3578033935192224951, 794559576204365478318, 194620831940208238831701, 52129134740350115227721340, 15158273263608217360939225587, 4755712518628181890216523759754
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 8*x + 191*x^2/2! + 8310*x^3/3! + 537117*x^4/4! + 46444164*x^5/5! +...
such that A(x) = exp(9*x*G(x)^8) / G(x)
where G(x) = 1 + x*G(x)^9 is the g.f. of A062994:
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[9^k * n!/k! * Binomial[9*n-k-2,n-k] * (8*k-1)/(8*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G = 1 + x*G^9 +x*O(x^n)); n!*polcoeff(exp(9*x*G^8)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-2,n-k) * (8*k-1)/(8*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^8 + 7*G'(x)/G(x).
(2) A(x) = F(x/A(x)^8) where F(x) is the e.g.f. of A251699.
(3) A(x) = Sum_{n>=0} A251699(n)*(x/A(x)^8)^n/n! where A251699(n) = (7*n+1) * (8*n+1)^(n-2) * 9^n.
(4) [x^n/n!] A(x)^(8*n+1) = (7*n+1) * (8*n+1)^(n-1) * 9^n.
a(n) = Sum_{k=0..n} 9^k * n!/k! * binomial(9*n-k-2,n-k) * (8*k-1)/(8*n-1) for n>=0.
Recurrence: 128*(2*n-1)*(4*n-3)*(4*n-1)*(8*n-7)*(8*n-5)*(8*n-3)*(8*n-1)*(33480783*n^8 - 453319173*n^7 + 2697889761*n^6 - 9230277240*n^5 + 19886167926*n^4 - 27672715746*n^3 + 24328423881*n^2 - 12365760717*n + 2776106045)*a(n) = 81*(160137547184727*n^16 - 2968899287488272*n^15 + 25604779347830979*n^14 - 136506824772659775*n^13 + 504285657127489314*n^12 - 1371500076773316825*n^11 + 2847804013092225933*n^10 - 4619534029925962572*n^9 + 5937710241656343834*n^8 - 6090889132598477481*n^7 + 4986522977501530773*n^6 - 3228624422259256476*n^5 + 1615386846720554091*n^4 - 595058403096826425*n^3 + 145565831993332122*n^2 - 17972427186502245*n - 2554359808000)*a(n-1) - 387420489*(33480783*n^8 - 185472909*n^7 + 462117474*n^6 - 687717459*n^5 + 680611896*n^4 - 464268429*n^3 + 210617505*n^2 - 51824070*n - 4480)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 7 * 3^(18*n-3) / 8^(8*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251670 E.g.f.: exp(10*x*G(x)^9) / G(x) where G(x) = 1 + x*G(x)^10 is the g.f. of A059968.

Original entry on oeis.org

1, 9, 242, 11824, 856824, 82986080, 10097121280, 1481787433920, 254874712419200, 50305519571800960, 11209381628379724800, 2783746998856794752000, 762476362390276346060800, 228363072063685762536960000, 74247696727054926125971251200, 26044746725090717967744412672000
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Comments

In general, sum_{k=0..n} m^k * n!/k! * binomial(m*n-k-2,n-k) * ((m-1)*k-1)/((m-1)*n-1), m>2, is asymptotic to (m-2) * m^(m*n-3/2) / (m-1)^((m-1)*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

Examples

			E.g.f.: A(x) = 1 + 9*x + 242*x^2/2! + 11824*x^3/3! + 856824*x^4/4! + 82986080*x^5/5! +...
such that A(x) = exp(10*x*G(x)^9) / G(x)
where G(x) = 1 + x*G(x)^10 is the g.f. of A059958:
G(x) = 1 + x + 10*x^2 + 145*x^3 + 2470*x^4 + 46060*x^5 + 910252*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[10^k * n!/k! * Binomial[10*n-k-2,n-k] * (9*k-1)/(9*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G = 1 + x*G^10 +x*O(x^n)); n!*polcoeff(exp(10*x*G^9)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-2,n-k) * (8*k-1)/(8*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^10 be the g.f. of A059968, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^9 + 8*G'(x)/G(x).
(2) A(x) = F(x/A(x)^9) where F(x) is the e.g.f. of A251700.
(3) A(x) = Sum_{n>=0} A251700(n)*(x/A(x)^9)^n/n! where A251700(n) = (8*n+1) * (9*n+1)^(n-2) * 10^n.
(4) [x^n/n!] A(x)^(9*n+1) = (8*n+1) * (9*n+1)^(n-1) * 10^n.
a(n) = Sum_{k=0..n} 10^k * n!/k! * binomial(10*n-k-2,n-k) * (9*k-1)/(9*n-1) for n>=0.
Recurrence: 81*(3*n-2)*(3*n-1)*(9*n-8)*(9*n-7)*(9*n-5)*(9*n-4)*(9*n-2)*(9*n-1)*(100000000*n^9 - 1508750000*n^8 + 10158500000*n^7 - 40108637500*n^6 + 102477510000*n^5 - 175985889125*n^4 + 203494963150*n^3 - 153061617555*n^2 + 68057955478*n - 13624029912)*a(n) = 800*(1250000000000000*n^18 - 25734375000000000*n^17 + 248379687500000000*n^16 - 1494668125000000000*n^15 + 6291920187500000000*n^14 - 19707236445312500000*n^13 + 47696214907031250000*n^12 - 91443867836531250000*n^11 + 141240231848528125000*n^10 - 177729148289358906250*n^9 + 183386452781820390625*n^8 - 155416253373710737500*n^7 + 107706559814898413750*n^6 - 60246014246053412750*n^5 + 26474457002621149925*n^4 - 8675686414409435660*n^3 + 1905677176596950796*n^2 - 212632849946745072*n - 10904042717568)*a(n-1) + 10000000000*(100000000*n^9 - 608750000*n^8 + 1688500000*n^7 - 2844137500*n^6 + 3264185000*n^5 - 2692901625*n^4 + 1611256650*n^3 - 663025355*n^2 + 151278318*n + 4536)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 8 * 10^(10*n-3/2) / 3^(18*n-1) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251693 a(n) = (n+1) * (2*n+1)^(n-2) * 3^n.

Original entry on oeis.org

1, 2, 27, 756, 32805, 1940598, 145746783, 13286025000, 1425299311881, 175940774387370, 24567422246484579, 3828825486242232732, 658868122100830078125, 124081133675135015343006, 25384277097202185803440935, 5605841615843732059988768592, 1329181093536536811199747015953
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 27*x^2/2! + 756*x^3/3! + 32805*x^4/4! +...
such that A(x) = exp( 3*x*A(x)^2 * G(x*A(x)^2)^2 ) / G(x*A(x)^2),
where G(x) = 1 + x*G(x)^3 is the g.f. A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
Also, e.g.f. A(x) satisfies A(x) = F(x*A(x)^2) where
F(x) = 1 + 2*x + 11*x^2/2! + 120*x^3/3! + 2061*x^4/4! + 48918*x^5/5! +...
F(x) = exp( 3*x*G(x)^2 ) / G(x) is the e.g.f. of A251663.
		

Crossrefs

Programs

  • Magma
    [(n + 1)*(2*n + 1)^(n - 2)*3^n: n in [0..50]]; // G. C. Greubel, Nov 13 2017
  • Mathematica
    Table[(n + 1)*(2*n + 1)^(n - 2)*3^n, {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *)
  • PARI
    {a(n) = (n+1) * (2*n+1)^(n-2) * 3^n}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(G=1,A=1); for(i=0, n, G = 1 + x*G^3 +x*O(x^n));
    A=( serreverse( x*G^2 / exp(6*x*G^2) )/x )^(1/2); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    

Formula

Let G(x) = 1 + x*G(x)^3 be the g.f. of A001764, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 3*x*A(x)^2 * G(x*A(x)^2)^2 ) / G(x*A(x)^2).
(2) A(x) = F(x*A(x)^2) where F(x) = exp(3*x*G(x)^2)/G(x) is the e.g.f. of A251663.
(3) A(x) = sqrt( Series_Reversion( x*G(x)^2 / exp(6*x*G(x)^2) )/x ).
E.g.f.: sqrt(-LambertW(-6*x)/(6*x))*(1+LambertW(-6*x)/6). - Vaclav Kotesovec, Dec 07 2014
Showing 1-10 of 10 results.