cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098098 a(n) = sigma(6*n+5)/6.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 8, 9, 10, 14, 12, 16, 14, 15, 20, 17, 18, 19, 24, 26, 22, 23, 28, 25, 32, 32, 28, 29, 30, 38, 32, 33, 40, 40, 44, 42, 38, 39, 40, 57, 42, 43, 44, 45, 62, 47, 56, 49, 56, 62, 52, 53, 60, 64, 68, 64, 58, 59, 60, 74, 72, 70, 64, 65, 80, 67, 76, 80, 70, 93, 72
Offset: 0

Views

Author

Vladeta Jovovic, Sep 14 2004

Keywords

Comments

Euler transform of period 6 sequence [2, 0, 0, 0, 2, -4, ...].
Expansion of q^(-5/6) * (eta(q)^-1 * eta(q^2) * eta(q^3) * eta(q^6))^2 in powers of q. - Michael Somos, Sep 16 2004
2*a(n) is the number of bipartitions of 2*n+1 that are 3-cores. See Baruah and Nath. - Michel Marcus, Apr 13 2020

Examples

			G.f. =1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 + ...
G.f. = q^5 + 2*q^11 + 3*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 7*q^41 + 8*q^47 + 9*q^53 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0( 36), 2), 432)[6]; /* Michael Somos, Jul 09 2018 */
  • Mathematica
    Table[DivisorSigma[1, 6 n + 5]/6, {n, 0, 71}] (* Ivan Neretin, Apr 30 2016 *)
  • PARI
    a(n) = sigma(6*n + 5)/6
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A))^2, n))} /* Michael Somos, Sep 16 2004 */
    

Formula

G.f.: (Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(6*k)))^2. - Michael Somos, Sep 16 2004
From Michael Somos, Jul 09 2018: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A252650. -
Convolution square of A121444.
A232343(2*n) = (-1)^n * A258831(n) = A000203(6*n + 4) = a(n). A033686(2*n) = -A134079(2*n + 1) = 2 * a(n). A121443(6*n + 5) = A133739(6*n + 5) = A232356(6*n + 5) = A134077(3*n + 2) = 6 * a(n). A125514(6*n + 5) = 24 * a(n). A134078(6*n + 5) = -36 * a(n). A186100(6*n + 5) = -72 * a(n). (End)
From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(A016969(n))/6.
Sum_{k=1..n} a(k) = (Pi^2/18) * n^2 + O(n*log(n)). (End)

A258210 Expansion of f(-q) * f(-q^2) * chi(-q^3) in powers of q where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, -2, 0, 1, 4, 0, 0, -2, -4, 2, 0, 0, -2, 0, 0, 1, 4, 4, 0, -4, 0, 0, 0, 0, -3, -4, 0, 0, 4, 0, 0, -2, 0, 2, 0, 4, -2, 0, 0, 2, 4, 0, 0, 0, -8, 0, 0, 0, -1, -6, 0, 2, 4, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 1, 8, 0, 0, -4, 0, 0, 0, 4, -2, -4, 0, 0, 0, 0, 0, -4
Offset: 0

Views

Author

Michael Somos, May 23 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by a_6(n) in Kassel and Reutenauer 2015. - Michael Somos, Jun 04 2015

Examples

			G.f. = 1 - q - 2*q^2 + q^4 + 4*q^5 - 2*q^8 - 4*q^9 + 2*q^10 - 2*q^13 + ...
		

Crossrefs

For the square of this series see A252650.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^6] QPochhammer[ q^5, q^6]), {q, 0, n}];
    a[ n_] := SeriesCoefficient[ (1/2) EllipticThetaPrime[ 1, 0, q^(1/2)] / EllipticTheta[ 1, Pi/6, q^(1/2)], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) / eta(x^6 + A), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * (1 - (n%3==2)*3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))}; /* Michael Somos, Jun 04 2015 */

Formula

Expansion of f(-q)^2 * f(-q^6) / f(-q, -q^5) in powers of q where f(,) is Ramanujan's general theta function.
Expansion of eta(q) * eta(q^2) * eta(q^3) / eta(q^6) in powers of q.
Euler transform of period 6 sequence [ -1, -2, -2, -2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 12 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A121444.
G.f.: Product_{k>0} (1 - x^k) * (1 - x^2*k) / (1 + x^(3*k)).
a(n) = (-1)^n * A258228(n). Convolution inverse of A077285.
a(4*n + 3) = 0. a(6*n + 2) = -2 * A122865(n). a(6*n + 4) = A122856(n). a(12*n + 1) = -1 * A002175(n).
a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = A104794(n). a(3*n + 1) = -A258277(n). a(3*n + 2) = -2*A258278(n). - Michael Somos, May 01 2016
G.f.: Product_{i>0} 1/(1 + Sum_{j>0} j*x^(j*i)). - Seiichi Manyama, Oct 08 2017

A252651 Expansion of q^(-1/2) * (eta(q) * eta(q^2) * eta(q^6) / eta(q^3))^2 in powers of q.

Original entry on oeis.org

1, -2, -3, 8, -2, -6, 14, -12, -9, 20, -16, -12, 31, -2, -15, 32, -24, -24, 38, -28, -21, 44, -12, -24, 57, -36, -27, 72, -40, -30, 62, -16, -42, 68, -48, -36, 74, -62, -48, 80, -2, -42, 108, -60, -45, 112, -64, -60, 98, -24, -51, 104, -96, -54, 110, -76, -57
Offset: 0

Views

Author

Michael Somos, Mar 22 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*x - 3*x^2 + 8*x^3 - 2*x^4 - 6*x^5 + 14*x^6 - 12*x^7 - 9*x^8 + ...
G.f. = q - 2*q^3 - 3*q^5 + 8*q^7 - 2*q^9 - 6*q^11 + 14*q^13 - 12*q^15 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 115); A[2] - 2*A[4] - 3*A[6] + 8*A[8] - 2*A[10];
  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-1/2)* (eta[q]*eta[q^2]*eta[q^6]/eta[q^3])^2, {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Apr 07 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A) * eta(x^6 + A) / eta(x^3 + A))^2, n))};
    

Formula

Expansion of f(-x^4)^4 * f(-x^6)^2 / f(x^2, x^4)^2 = f(-x^4)^4 * f(-x^2, -x^10)^2 / f(-x^12)^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/2) * sqrt(b(q) / (3 * c(q))) * b(q^2) * c(q^2) in powers of q where b(), c() are cubic AGM theta functions.
Euler transform of period 6 sequence [ -2, -4, 0, -4, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 81 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A118272.
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 - x^k + x^(2*k))^2.
-2 * a(n) = A252650(2*n + 1).

A293386 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} 1/(1 + Sum_{j=1..k} j*x^(j*i))^2.

Original entry on oeis.org

1, 1, 0, 1, -2, 0, 1, -2, 1, 0, 1, -2, -3, -2, 0, 1, -2, -3, 10, 4, 0, 1, -2, -3, 4, -4, -4, 0, 1, -2, -3, 4, 14, -20, 5, 0, 1, -2, -3, 4, 6, -8, 41, -6, 0, 1, -2, -3, 4, 6, 16, -46, 2, 9, 0, 1, -2, -3, 4, 6, 6, -30, 14, -111, -12, 0, 1, -2, -3, 4, 6, 6, 0, -58
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,  1,  1, ...
   0, -2,  -2, -2, -2, ...
   0,  1,  -3, -3, -3, ...
   0, -2,  10,  4,  4, ...
   0,  4,  -4, 14,  6, ...
   0, -4, -20, -8, 16, ...
		

Crossrefs

Columns k=0..1 give A000007, A022597.
Rows n=0 gives A000012.
Main diagonal gives A252650.
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: this sequence (m=-2), A290217 (m=-1), A290216 (m=1), A293377 (m=2).
Showing 1-4 of 4 results.