A055265 a(n) is the smallest positive integer not already in the sequence such that a(n)+a(n-1) is prime, starting with a(1)=1.
1, 2, 3, 4, 7, 6, 5, 8, 9, 10, 13, 16, 15, 14, 17, 12, 11, 18, 19, 22, 21, 20, 23, 24, 29, 30, 31, 28, 25, 34, 27, 26, 33, 38, 35, 32, 39, 40, 43, 36, 37, 42, 41, 48, 49, 52, 45, 44, 53, 50, 47, 54, 55, 46, 51, 56, 57, 70, 61, 66, 65, 62, 69, 58, 73, 64, 63, 68, 59, 72, 67, 60
Offset: 1
Examples
a(5) = 7 because 1, 2, 3 and 4 have already been used and neither 4 + 5 = 9 nor 4 + 6 = 10 are prime while 4 + 7 = 11 is prime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000 (First 1000 terms from T. D. Noe)
- N. J. A. Sloane, Table of n, a(n) for n = 1..100000 (computed using Orlovsky's Mma program)
- M. F. Hasler, Prime sums from neighboring terms, OEIS Wiki, Nov. 23, 2019
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Inverse permutation: A117922; fixed points: A117925; A117923=a(a(n)). - Reinhard Zumkeller, Apr 03 2006
Cf. A086527 (the primes a(n)+a(n-1)).
Cf. A070942 (n's such that a(1..n) is a permutation of (1..n)). - Zak Seidov, Oct 19 2011
See A282695 for deviation from identity sequence.
A073659 is a version where the partial sums must be primes.
Programs
-
Haskell
import Data.List (delete) a055265 n = a055265_list !! (n-1) a055265_list = 1 : f 1 [2..] where f x vs = g vs where g (w:ws) = if a010051 (x + w) == 1 then w : f w (delete w vs) else g ws -- Reinhard Zumkeller, Feb 14 2013
-
Maple
A055265 := proc(n) local a,i,known ; option remember; if n =1 then 1; else for a from 1 do known := false; for i from 1 to n-1 do if procname(i) = a then known := true; break; end if; end do: if not known and isprime(procname(n-1)+a) then return a; end if; end do: end if; end proc: seq(A055265(n),n=1..100) ; # R. J. Mathar, Feb 25 2017
-
Mathematica
f[s_List] := Block[{k = 1, a = s[[ -1]]}, While[ MemberQ[s, k] || ! PrimeQ[a + k], k++ ]; Append[s, k]]; Nest[f, {1}, 71] (* Robert G. Wilson v, May 27 2009 *) q=2000; a={1}; z=Range[2,2*q]; While[Length[z]>q-1, k=1; While[!PrimeQ[z[[k]]+Last[a]], k++]; AppendTo[a,z[[k]]]; z=Delete[z,k]]; Print[a] (*200 times faster*) (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
-
PARI
v=[1];n=1;while(n<50,if(isprime(v[#v]+n)&&!vecsearch(vecsort(v),n), v=concat(v,n);n=0);n++);v \\ Derek Orr, Jun 01 2015
-
PARI
U=-a=1; vector(100,k, k=valuation(1+U+=1<M. F. Hasler, Feb 11 2020
Formula
Extensions
Corrected by Hans Havermann, Sep 24 2002
Comments