A254371 Sum of cubes of the first n even numbers (A016743).
0, 8, 72, 288, 800, 1800, 3528, 6272, 10368, 16200, 24200, 34848, 48672, 66248, 88200, 115200, 147968, 187272, 233928, 288800, 352800, 426888, 512072, 609408, 720000, 845000, 985608, 1143072, 1318688, 1513800, 1729800, 1968128, 2230272, 2517768, 2832200, 3175200
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers, ch. 3.
- Diophante, Une miniature avec trois entiers consécutifs (in French).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([0..35],n->2*(n*(n+1))^2); # Muniru A Asiru, Oct 24 2018
-
Magma
[2*n^2*(n+1)^2: n in [0..40]]; // Bruno Berselli, Mar 23 2015
-
Maple
A254371:=n->2*n^2*(n + 1)^2: seq(A254371(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
-
Mathematica
Table[2 n^2 (n+1)^2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 72, 288, 800}, 40] Accumulate[Range[0,80,2]^3] (* Harvey P. Dale, Jun 26 2017 *)
-
PARI
a(n)=sum(i=0, n, 8*i^3); \\ Michael B. Porter, Mar 16 2015
Formula
G.f.: 8*x*(1 + 4*x + x^2)/(1 - x)^5.
a(n) = 2*n^2*(n + 1)^2.
a(n) = 8*A000537(n). - Michel Marcus, Apr 23 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 - 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - 2*log(2). (End)
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 2*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Comments