A255270 Integer part of fourth root of n.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[IsZero(n) select 0 else Iroot(n, 4): n in [0..100]];
-
Magma
[Floor(n^(1/4)): n in [0..100]]; // Vincenzo Librandi, Feb 20 2015
-
Maple
A255270 := proc(n) floor( n^(1/4)) ; end proc: seq(A255270(n),n=0..100) ; # R. J. Mathar, May 08 2020
-
Mathematica
Floor[Range[0, 100]^(1/4)]
-
PARI
vector(100, n, n--; floor(n^(1/4)))
-
PARI
a(n) = sqrtnint(n, 4); \\ Michel Marcus, Dec 22 2016
-
Python
from sympy import integer_nthroot def A255270(n): return integer_nthroot(n,4)[0] # Chai Wah Wu, Jun 06 2025
-
Sage
[floor(n^(1/4)) for n in (0..100)]
Formula
a(n) = floor(n^(1/4)) = floor(sqrt(A000196(n))).
G.f.: Sum_{k>=1} x^(k^4)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A219009(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023
Comments