cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255270 Integer part of fourth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2015

Keywords

Comments

n appears (n+1)^4 - n^4 times (A005917).

Crossrefs

Cf. A005917.
Cf. sequences of the type floor(n^(1/k)): A000196 (k=2), A048766 (k=3), this sequence (k=4), A178487 (k=5), A178489 (k=6).
Cf. A219009.

Programs

  • Magma
    [IsZero(n) select 0 else Iroot(n, 4): n in [0..100]];
    
  • Magma
    [Floor(n^(1/4)): n in [0..100]]; // Vincenzo Librandi, Feb 20 2015
    
  • Maple
    A255270 := proc(n)
        floor( n^(1/4)) ;
    end proc:
    seq(A255270(n),n=0..100) ; # R. J. Mathar, May 08 2020
  • Mathematica
    Floor[Range[0, 100]^(1/4)]
  • PARI
    vector(100, n, n--; floor(n^(1/4)))
    
  • PARI
    a(n) = sqrtnint(n, 4); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A255270(n): return integer_nthroot(n,4)[0] # Chai Wah Wu, Jun 06 2025
  • Sage
    [floor(n^(1/4)) for n in (0..100)]
    

Formula

a(n) = floor(n^(1/4)) = floor(sqrt(A000196(n))).
G.f.: Sum_{k>=1} x^(k^4)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A219009(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023