cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A180241 Numbers whose square can be expressed as the sum of a square, a cube and a fourth power, all positive.

Original entry on oeis.org

5, 7, 8, 9, 12, 17, 18, 19, 21, 22, 23, 24, 25, 28, 31, 32, 33, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

Carmine Suriano, Aug 19 2010

Keywords

Comments

a(n)^2 = x^2 + y^3 + z^4 with x,y,z > 0.

Examples

			a(5) = 12 is a term since 12*12 = 144 = 6^2 + 3^3 + 3^4 = 36 + 27 + 81.
		

Crossrefs

Programs

  • PARI
    for(D=1,99,for(C=1,sqrtn(D^2-1,4),for(B=1,sqrtn(D^2-C^4-1,3),issquare(D^2-C^4-B^3,&A)&&print1([A,B,C,D][4]",")+next(3)))) \\ M. F. Hasler, Apr 06 2015

A180242 Numbers whose square cannot be expressed as the sum of a positive square, a positive cube and a positive fourth power.

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 11, 13, 14, 15, 16, 20, 26, 27, 29, 30, 34, 36, 40, 43, 48, 49, 50, 56, 58, 62, 64, 76, 86, 92, 94, 102, 104, 106, 122, 126, 130, 146, 148, 176, 178, 202, 211, 218, 227, 232, 238, 246, 248, 262, 272, 281, 286, 310, 311, 326, 335, 344, 346, 349, 370
Offset: 1

Views

Author

Carmine Suriano, Aug 19 2010

Keywords

Comments

Complement to A180241 with respect to the set of positive integers.
If k^2 = m^2 + t^3 + u^4 where k, m, t and u are positive then k^2 - m^2 = (k - m)*(k + m) = t^3 + u^4 which might ease the search for terms by looking at divisors of t^3 + u^4. - David A. Corneth, Apr 03 2023

Examples

			a(5) = 6 since 6^2 = 36 cannot be expressed as the sum of a square, a cube and a fourth power.
		

Crossrefs

Programs

  • PARI
    for(D=1,99,for(C=1,sqrtn(D^2-1,4),for(B=1,sqrtn(D^2-C^4-1,3),issquare(D^2-C^4-B^3)&&next(3)));print1(D",")) \\ M. F. Hasler, Apr 06 2015
    
  • PARI
    is(n)=my(n2=n^2); for(C=1, sqrtn(n2-1, 4), my(t=n2-C^4); for(B=1, sqrtn(t-1, 3), if(issquare(t-B^3), return(0)))); 1 \\ Charles R Greathouse IV, Apr 06 2015

Extensions

Name clarified by David A. Corneth, Mar 20 2023

A256091 Numbers D such that D^2 = A^3 + B^4 + C^5 for some positive integers A, B, C.

Original entry on oeis.org

5, 7, 9, 11, 17, 23, 25, 33, 38, 45, 55, 72, 79, 89, 95, 96, 99, 100, 103, 105, 117, 133, 137, 163, 171, 213, 218, 220, 237, 239, 240, 248, 255, 257, 282, 303, 305, 320, 347, 355, 362, 375, 384, 393, 407, 408, 411, 459, 475, 503, 506, 513, 525, 539, 540, 567, 581, 613, 616, 657, 659, 660, 751, 752, 761, 792, 796, 808, 824, 833
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2015

Keywords

Comments

(8^n*(4^n+8); n = 0, 1, 2, ...) is an infinite subsequence of the subsequence A256613: see that entry for more details.

Examples

			(A, B, C) = (1, 4, 2): 1^3 + 4^4 + 2^5 = 1 + 256 + 32 = 289 = 17^2, so 17 is a term.
		

Crossrefs

Programs

  • PARI
    for(D=3,9999,for(C=1,sqrtn(D^2-2,5),for(B=1,sqrtn(D^2-C^5-1,4),ispower(D^2-C^5-B^4,3)&&print1(D","))))
    
  • PARI
    for(D=3, 9999, ok = 0; for(C=1, sqrtn(D^2-2, 5), for(B=1, sqrtn(D^2-C^5-1, 4), ispower(D^2-C^5-B^4, 3)&&(ok=1)&&print1(D", "); if (ok, break)); if (ok, break))) \\ Michel Marcus, Apr 26 2015

Extensions

Inserted a(5)=17 and removed the doublet 525 by Lars Blomberg, Apr 26 2015

A256613 Numbers D such that D^2 = A^3 + B^4 + C^5 and A^2 + B^3 + C^4 = d^2 for some positive integers A, B, C, d.

Original entry on oeis.org

7, 9, 17, 55, 72, 96, 459, 616, 1536, 4125, 9504, 11875, 19551, 36864, 64881, 67392, 77824, 108000, 171699, 262656, 388869, 559776, 786375, 1052672, 1081344, 1160000, 1413872, 1459161, 1850202, 1936224, 2530971, 3264000, 4158189, 5187500, 5238816, 6533679
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2015

Keywords

Comments

Subsequence of A256091 such that A^2 + B^3 + C^4 = A180241(k)^2 for some k.
For A=2^(2n+2), B=2^(2n+1), C=2^(2n), n=0,1,2,... one has A^2+B^3+C^4 = 2^(4n) (16+8*4^n+16^n) = d^2 with d = 4^n (4^n+4), and A^3+B^4+C^5 = 2^(6n) (2^(2n)+8)^2 = D^2 with D = 8^n (4^n+8). So the latter represents an infinite subsequence (9, 96, 1536, ...) of this sequence.

Examples

			(A, B, C) = (1, 4, 2) = 1^3 + 4^4 + 2^5 = 1 + 256 + 32 = 289 = 17^2
and 1^2 + 4^3 + 2^4 = 1 + 64 + 16 = 81 = 9^2,
so 17 is a term.
		

Crossrefs

Programs

  • PARI
    is_A256613(D)={my(A,C=0,D2C5);while(1A256613(D) && print1(D","))}

Extensions

Inserted a(3)=17 and added a(18-36) by Lars Blomberg, Apr 26 2015

A256603 Numbers D such that D^2 = A^3 + B^4 + C^5 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

305, 525, 1206, 1257, 1395, 2048, 2213, 3072, 4348, 6400, 16385, 16640, 16704, 20631, 22872, 23256, 30968, 31407, 32769, 62943, 74515, 77713, 77824, 79776, 82565, 84775, 90432, 98739, 117600, 121250, 133696, 163525, 165628, 171576, 198400, 199872, 243225
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

A subsequence of A256091. Sequences A256604 and A256652 are the analog for A180241 and A255830.

Examples

			(A, B, C) = (32, 128, 1): 32^3 + 128^4 + 1^5 = 32768 + 268435456 + 1 = 268468225 = 16385^2
(A, B, C) = (1, 128, 8): 1^3 + 128^4 + 8^5 = 1 + 268435456 + 32768 = 268468225 = 16385^2
so 16385 is a term.
		

Crossrefs

Programs

  • PARI
    for(D=1,9999,f=-1;for(C=1,sqrtn(D^2-1,5),for(B=1,sqrtn(D^2-C^5-.5,4),ispower(D^2-C^5-B^4,3)&&f++&print1(D",")+next(3))))

Extensions

Inserted a(11),a(16) and added a(19)-a(37) by Lars Blomberg, Apr 17 2015

A256604 Numbers D such that D^2 = A^2 + B^3 + C^4 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

5, 9, 12, 17, 19, 21, 23, 25, 28, 33, 35, 37, 38, 39, 42, 45, 46, 47, 51, 53, 55, 57, 59, 60, 61, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 77, 80, 81, 82, 84, 87, 88, 89, 91, 93, 95, 97, 98, 99, 100, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 123, 124, 127, 128, 129, 131, 132, 133, 134, 135, 136, 139, 141
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

The subsequence of terms of A180241 whose square has more than one representation of the given form. See A256603 and A256652 are the analog for A256091 and A255830.

Examples

			(A, B, C) = (4, 8, 1): 4^2 + 8^3 + 1^4 = 16 + 512 + 1 = 529 = 23^2 and
(A, B, C) = (1, 8, 2): 1^2 + 8^3 + 2^4 = 1 + 512 + 16 = 529 = 23^2,
so 23 is a term.
		

Crossrefs

Programs

  • PARI
    for(D=2,199,my(f=-1,B,D2C4);for(C=1,sqrtint(D),D2C4=D^2-C^4; B=0;while(B++^3M. F. Hasler, May 01 2015

Extensions

Inserted a(7)=23 by Lars Blomberg, Apr 26 2015

A256652 Numbers D such that D^2 = A^4 + B^5 + C^6 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

1257, 32769, 262176, 262208, 1081344, 4198400, 16777217, 16809984
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

A subsequence of A255830. Sequences A256604 and A256603 are the analog for A180241 and A256091.
Terms a(2) - a(8) have Hamming weight 2: 32769 = 2^15 + 1, 262176 = 2^18 + 2^5, 262208 = 2^18 + 2^6, 1081344 = 2^20 + 2^15, 4198400 = 2^22 + 2^12, 16777217 = 2^24 + 1, 16809984 = 2^24 + 2^15.
Given D^2 = A^4+B^5+C^6, multiply by u^60, u>1, to get (u^30*D)^2 = (u^15*A)^4 + (u^12*B)^5 + (u^10*C)^6. If D is a solution then so is u^30*D. - Lars Blomberg, Apr 26 2015
Solutions for a(1)-a(8) as well as some larger terms:
..A1.....B1....C1......A2.....B2....C2..............D
..35......8.....6......32......2.....9...........1257
..16......1....32......16.....64.....1..........32769
..64......4....64.....512......4....16.........262176
...8.....32....64.....512.....32.....4.........262208
1024.....64....64.....512....256....32........1081344
.480....240...160....2048....128....16........4198400
...1.....32...256....4096.....32.....1.......16777217
1024.....64...256....4096....256....32.......16809984
.512......4..1024...32768......4....64.....1073741856
1024...4096.....8...32768....256.....8.....1073742336
4096...2048..1024...32768...2048...256.....1090519040
...1..16384....64.....512..16384.....1....34359738369
4096..16384....16......64..16384...256....34359742464
4096..16384..1024...32768..16384...256....34376515584
.512...2048..4096..262144...2048....64....68719738880
...1....256..8192....1024......1..8192...549755813889
1024...4096..8192...32768....256..8192...549756862464
- Lars Blomberg, Apr 26 2015

Examples

			(A, B, C) = (32, 2, 9): 32^4 + 2^5 + 9^6 = 1048576 + 32 + 531441 = 1580049 = 1257^2, and
(A, B, C) = (35, 8, 6): 35^4 + 8^5 + 6^6 = 1500625 + 32768 + 46656 = 1580049 = 1257^2,
so 1257 is a term.
		

Crossrefs

Programs

  • PARI
    is_A256652(D,f=-1)={my(C=0,B,D2C6);while(1A256652(D)&&print1(D",")) \\ Converted to integer arithmetic by M. F. Hasler, May 01 2015

Extensions

a(5)-a(8) from Lars Blomberg, Apr 26 2015
Showing 1-7 of 7 results.