A180242 Numbers whose square cannot be expressed as the sum of a positive square, a positive cube and a positive fourth power.
1, 2, 3, 4, 6, 10, 11, 13, 14, 15, 16, 20, 26, 27, 29, 30, 34, 36, 40, 43, 48, 49, 50, 56, 58, 62, 64, 76, 86, 92, 94, 102, 104, 106, 122, 126, 130, 146, 148, 176, 178, 202, 211, 218, 227, 232, 238, 246, 248, 262, 272, 281, 286, 310, 311, 326, 335, 344, 346, 349, 370
Offset: 1
Keywords
Examples
a(5) = 6 since 6^2 = 36 cannot be expressed as the sum of a square, a cube and a fourth power.
Links
- David A. Corneth, Table of n, a(n) for n = 1..3170 (terms <= 10^7)
Programs
-
PARI
for(D=1,99,for(C=1,sqrtn(D^2-1,4),for(B=1,sqrtn(D^2-C^4-1,3),issquare(D^2-C^4-B^3)&&next(3)));print1(D",")) \\ M. F. Hasler, Apr 06 2015
-
PARI
is(n)=my(n2=n^2); for(C=1, sqrtn(n2-1, 4), my(t=n2-C^4); for(B=1, sqrtn(t-1, 3), if(issquare(t-B^3), return(0)))); 1 \\ Charles R Greathouse IV, Apr 06 2015
Extensions
Name clarified by David A. Corneth, Mar 20 2023
Comments