A258484 Numbers m such that m equals a fixed number raised to the powers of the digits.
1, 10, 12, 100, 101, 111, 1000, 1010, 1033, 1100, 2112, 4624, 10000, 10001, 11101, 20102, 31301, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100, 101110, 101111, 101121, 110000, 110001, 110010, 110100, 110110, 110111, 111000
Offset: 1
Examples
12 = 3^1 + 3^2; 31301 = 25^3 + 25^1 + 25^3 + 25^0 + 25^1; 595968 = 4^5 + 4^9 + 4^5 + 4^9 + 4^6 + 4^8; 13177388 = 7^1 + 7^3 + 7^1 + 7^7 + 7^7 + 7^3 + 7^8 + 7^8.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..956 (terms < 10^12)
- Giovanni Resta, Table of a(1..956) values and corresponding bases
Programs
-
Mathematica
okQ[v_] := Block[{b, d=IntegerDigits@ v, y, t}, t = Last@ Tally@ Sort@d; b = Floor[ (v/t[[2]]) ^ (1/t[[1]])]; While[(y = Total[b^d]) > v, b--]; v==y]; Select[Range[10^5],okQ] (* Giovanni Resta, Jun 01 2015 *)
-
PARI
for(n=1,10^5,d=digits(n);for(m=1,n,s=sum(i=1,#d,m^d[i]);if(s==n,print1(n,", ");break);if(s>n,break))) \\ Derek Orr, Jun 12 2015
-
Python
def moda(n,a,m): kk = 0 while n > 0: na=int(n%m) kk= kk+a**na n =int(n//m) return kk for c in range (1, 10**8): for a in range (1,20): if c==moda(c,a,10): print (a,c)
Extensions
More terms from Giovanni Resta, Jun 01 2015
Comments