cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A258484 Numbers m such that m equals a fixed number raised to the powers of the digits.

Original entry on oeis.org

1, 10, 12, 100, 101, 111, 1000, 1010, 1033, 1100, 2112, 4624, 10000, 10001, 11101, 20102, 31301, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100, 101110, 101111, 101121, 110000, 110001, 110010, 110100, 110110, 110111, 111000
Offset: 1

Views

Author

Pieter Post, May 31 2015

Keywords

Comments

Let m = abcde... and z is a fixed radix -> m = z^a +z^b +z^c +z^d +z^e...
A number m made of k ones and h zeros is a member if m-h is divisible by k. Several other large members exist, including 12095925296900865188 (base = 113) and 115330163577499130079377256005 (base = 1500). - Giovanni Resta, Jun 01 2015

Examples

			12 = 3^1 + 3^2;
31301 = 25^3 + 25^1 + 25^3 + 25^0 + 25^1;
595968 = 4^5 + 4^9 + 4^5 + 4^9 + 4^6 + 4^8;
13177388 = 7^1 + 7^3 + 7^1 + 7^7 + 7^7 + 7^3 + 7^8 + 7^8.
		

Crossrefs

Programs

  • Mathematica
    okQ[v_] := Block[{b, d=IntegerDigits@ v, y, t}, t = Last@ Tally@ Sort@d; b = Floor[ (v/t[[2]]) ^ (1/t[[1]])]; While[(y = Total[b^d]) > v, b--]; v==y]; Select[Range[10^5],okQ] (* Giovanni Resta, Jun 01 2015 *)
  • PARI
    for(n=1,10^5,d=digits(n);for(m=1,n,s=sum(i=1,#d,m^d[i]);if(s==n,print1(n,", ");break);if(s>n,break))) \\ Derek Orr, Jun 12 2015
  • Python
    def moda(n,a,m):
        kk = 0
        while n > 0:
            na=int(n%m)
            kk= kk+a**na
            n =int(n//m)
        return kk
    for c in range (1, 10**8):
        for a in range (1,20):
            if  c==moda(c,a,10):
                print (a,c)
    

Extensions

More terms from Giovanni Resta, Jun 01 2015

A366507 Numbers k such that the sum of the digits of k times the square of the sum of the digits cubed of k equals k.

Original entry on oeis.org

1, 4147200, 12743163, 21147075, 39143552, 52921472, 156754936, 205889445, 233935967
Offset: 1

Views

Author

René-Louis Clerc, Oct 11 2023

Keywords

Comments

There are exactly 9 such numbers (Property 13 of Clerc).

Examples

			4147200 = (4+1+4+7+2)*(4^3+1+4^3+7^3+2^3)^2 = 18*230400.
		

Crossrefs

Programs

  • PARI
    niven12()={for(a=0,9,for(b=0,9,for(c=0,9,for(d=0,9,for(e=0,9,for(f=0,9,for(g=0,9,for(h=0,9,for(i=0,9,for(j=0,9,if((a+b+c+d+e+f+g+h+i+j)*(a^3+b^3+c^3+d^3+e^3+f^3+g^3+h^3+i^3+j^3)^2==1000000000*a+100000000*b+10000000*c+1000000*d+100000*e+10000*f+1000*g+100*h+10*i+j,print1(1000000000*a+100000000*b+10000000*c+1000000*d+100000*e+10000*f+1000*g+100*h+10*i+j,";"))))))))))))}
    
  • PARI
    isok(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^3)^2 == k; \\ Michel Marcus, Oct 12 2023

A366512 Numbers k such that the square of the sum of the digits times the sum of the cubes of the digits equals k.

Original entry on oeis.org

1, 32144, 37000, 111616, 382360
Offset: 1

Views

Author

René-Louis Clerc, Oct 11 2023

Keywords

Comments

There are exactly 5 such numbers (Property 14 of Clerc).

Examples

			32144 = ((3+2+1+4+4)^2)*(3^3 + 2^3 + 1^3 + 4^3 + 4^3) = 196*164.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1 == Total[#2]^2*Total[#2^3] & @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Mar 25 2024 *)
  • PARI
    niven23()={for(a=0,9,for(b=0,9,for(c=0,9,for(d=0,9,for(e=0,9,for(f=0,9,for(g=0,9,for(h=0,9,if((a+b+c+d+e+f+g+h)^2*(a^3+b^3+c^3+d^3+e^3+f^3+g^3+h^3)==10000000*a+1000000*b+100000*c+10000*d+1000*e+100*f+10*g+h,print1(10000000*a+1000000*b+100000*c+10000*d+1000*e+100*f+10*g+h,", "))))))))))}
    
  • PARI
    isok(k) = my(d=digits(k)); vecsum(d)^2*sum(i=1, #d, d[i]^3) == k; \\ Michel Marcus, Oct 12 2023

A257860 Numbers n such that a digit of n to the power k plus the sum of the other digits of n equals n, where k is a positive integer.

Original entry on oeis.org

1, 89, 132, 264, 518, 739, 2407, 6579, 8200, 8201, 8202, 8203, 8204, 8205, 8206, 8207, 8208, 8209, 32780, 32781, 32782, 32783, 32784, 32785, 32786, 32787, 32788, 32789, 59060, 59061, 59062, 59063, 59064, 59065, 59066, 59067, 59068, 59069, 78145, 524300, 524301, 524302, 524303, 524304, 524305, 524306, 524307, 524308, 524309, 531459, 823567, 2097178
Offset: 1

Views

Author

Pieter Post, May 11 2015

Keywords

Comments

There are numbers that come in groups of 10, like 8200, 32780 and 524300. But there are also a few stand-alone numbers. Like 531459 (=5+3+1+4+5+9^6).
It is easy to generate large terms in the sequence, for example, 9^104+409 and 9^1047+4561 are the smallest terms with 100 and 1000 digits, respectively. - Giovanni Resta, May 12 2015

Examples

			89 is in the sequence because 89 = 8+9^2.
2407 is in the sequence because 2407 = 2+4+0+7^4.
8202 is in the sequence because 8202 = 8+ 2^13 +0+2, also 8202 = 8+2+0+2^13.
		

Crossrefs

Programs

  • Haskell
    import Data.List (nub); import Data.List.Ordered (member)
    a257860 n = a257860_list !! (n-1)
    a257860_list = 1 : filter f [1..] where
       f x = any (\d -> member (x - q + d) $ ps d) $ filter (> 1) $ nub ds
             where q = sum ds; ds = (map (read . return) . show) x
       ps x = iterate (* x) (x ^ 2)
    -- Reinhard Zumkeller, May 12 2015
  • Python
    def sod(n):
        kk = 0
        while n > 0:
            kk= kk+(n%10)
            n =int(n//10)
        return kk
    for i in range (1,10**7):
        for j in range(1,len(str(i))+1):
            k=(i//(10**(j-1)))%10
            for m in range (2,30):
                if i==sod(i)+k**m-k:
                    print (i)
    

Extensions

One more term and some missing data added by Reinhard Zumkeller, May 12 2015

A368939 Numbers k such that the sum of the digits times the sum of the fourth powers of the digits equals k.

Original entry on oeis.org

0, 1, 182380, 444992
Offset: 1

Views

Author

René-Louis Clerc, Jan 10 2024

Keywords

Comments

There are exactly 4 such numbers (Property 16 of Clerc).

Examples

			182380 = (1+8+2+3+8)*(1^4 + 8^4 + 2^4 + 3^4 + 8^4) = 22*8290.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,10^7],#==Total[IntegerDigits[#]]*Total[IntegerDigits[#]^4]&] (* James C. McMahon, Jan 11 2024 *)
  • PARI
    niven14(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^4) == k;
    for(k=1,10^7,if(niven14(k)==1,print1(k,", ")))

A370250 Numbers k such that the sum of the digits times the square of the sum of the fourth powers of the digits equals k.

Original entry on oeis.org

0, 1, 5873656512, 7253758561, 29961747275
Offset: 1

Views

Author

René-Louis Clerc, Feb 13 2024

Keywords

Comments

There are exactly 5 such numbers (Property 17 of Clerc).

Examples

			7253758561 = (7+2+5+3+7+5+8+5+6+1)*(7^4 + 2^4 + 5^4 + 3^4 + 7^4 + 5^4 + 8^4 + 5^4 + 6^4 + 1^4)^2 = 49*148035889 = 7253758561.
		

Crossrefs

Programs

  • PARI
    niven142(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^4)^2 == k;
    for(k=0,10^12,if(niven142(k)==1,print1(k, ", ")))
Showing 1-6 of 6 results.