Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 2, 12, 14, 50, 97, 312, 744, 2291
Offset: 1
A000228
Number of hexagonal polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells.
Original entry on oeis.org
1, 1, 3, 7, 22, 82, 333, 1448, 6572, 30490, 143552, 683101, 3274826, 15796897, 76581875, 372868101, 1822236628, 8934910362, 43939164263, 216651036012, 1070793308942, 5303855973849, 26323064063884, 130878392115834, 651812979669234, 3251215493161062, 16240020734253127, 81227147768301723, 406770970805865187, 2039375198751047333
Offset: 1
- A. T. Balaban and F. Harary, Chemical graphs V: enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, Tetrahedron 24 (1968), 2505-2516.
- A. T. Balaban and Paul von R. Schleyer, "Graph theoretical enumeration of polymantanes", Tetrahedron, (1978), vol. 34, 3599-3609
- M. Gardner, Polyhexes and Polyaboloes. Ch. 11 in Mathematical Magic Show. New York: Vintage, pp. 146-159, 1978.
- M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
- J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Mason and Robert A. Russell, Table of n, a(n) for n = 1..36
- Frédéric Chyzak, Ivan Gutman, and Peter Paule, Predicting the number of hexagonal systems with 24 and 25 hexagons, Communications in Mathematical and Computer Chemistry (1999) No. 40, 139-151. See p. 141.
- A. Clarke, Polyhexes
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
- D. Gouyou-Beauchamps and P. Leroux, Enumeration of symmetry classes of convex polyominoes on the honeycomb lattice, arXiv:math/0403168 [math.CO], 2004.
- M. Keller, Counting polyforms
- D. A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863.
- J. V. Knop, K. Szymanski, Ž. Jeričević, and N. Trinajstić, On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023), p. 3.
- John Mason, Counting polyhexes of size 36, updated Oct 27 2023.
- Joseph Myers, Polyomino, polyhex and polyiamond tiling
- Ed Pegg, Jr., Illustrations of polyforms
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- N. J. A. Sloane, Illustration of initial terms
- N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
- Eric Weisstein's World of Mathematics, Polyhex.
a(14) from Brendan Owen, Dec 31 2001
a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
A284869
Number of n-step 2-dimensional closed self-avoiding paths on triangular lattice, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct.
Original entry on oeis.org
0, 0, 1, 1, 1, 4, 5, 16, 37, 120, 344, 1175, 3807, 13224, 45645, 161705, 575325, 2074088, 7521818, 27502445, 101134999, 374128188
Offset: 1
Approaches (1/12)*
A036418 for increasing n.
A346123
Numbers m such that no self-avoiding walk of length m + 1 on the honeycomb net fits into the smallest circle that can enclose a walk of length m.
Original entry on oeis.org
1, 2, 6, 7, 10, 12, 13, 14, 15, 16, 23, 24, 25, 27, 28, 30, 33, 36, 37, 38, 42, 43, 46, 53, 54, 55, 56, 58, 59, 62
Offset: 1
Illustration of initial terms:
%%% %%% %%%
% %
% %
% % % /%
% % % a(2) = 2 / %
%__________% % / %
% L = 1 % % / %
% D = 1 % % L = 2, D = 1.732 / %
% % % / %
% / Pi/3 %
a(1) = 1 %-------------- . . . .%
% %
% %
%%% %%% %%%
.
%%% %%%% %%% %%% %%%% %%%
% % % %
% % % \ %
% % % \ %
% % % \ %
% % % \ %
% % % \ %
%. L = 3, D = 2.00 .% %. L = 4, D = 2.00 .%
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% ---------------- % % ---------------- %
%%% %%% %%% %%% %%% %%%
.
%%% %%% %%% %%% %%% %%%
% ______________ % % ______________ %
% \ % % / \ %
% \ % % / \ %
% \ % % / \ %
% \ % % / a(3) = 6 \ %
% \ % % / \ %
%. L = 5, D = 2.00 .% %. L = 6, D = 2.00 .%
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% ---------------- % % ---------------- %
%%% %%%% %%% %%% %%%% %%%
.
The path of minimum diameter of length 7 requires an enclosing circle of D = 3.055, which is greater than the previous minimum diameter of D = 2.00 corresponding to a(3) = 6. No path of length 8 exists that fits into a circle of D = 3.055, thus a(4) = 7.
See link for illustrations of terms corresponding to diameters D <= 9.85.
Cf.
A346124-
A346132 similar to this sequence with other sets of turning angles.
A316195
Number of self-avoiding polygons with perimeter 2*n and sides = 1 that have vertex angles from the set +-Pi/5, +-3*Pi/5, not counting rotations and reflections as distinct.
Original entry on oeis.org
0, 0, 2, 1, 18, 45, 441
Offset: 1
A057779
Number of hexagonal polyominoes (or polyhexes, A000228) with perimeter 2n.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 2, 12, 14, 50, 98, 313, 750, 2308, 6270
Offset: 1
A316197
Number of self-avoiding polygons with perimeter 2*n and sides = 1 that have vertex angles from the set +-Pi/7, +-3*Pi/7, +-5*Pi/7, not counting rotations and reflections as distinct.
Original entry on oeis.org
0, 0, 3, 4, 83, 533, 8329
Offset: 1
A258204
Number of one-sided strictly non-overlapping holeless polyhexes of perimeter 2n, counted up to rotation.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 3, 16, 23, 80, 183, 563
Offset: 1
A258019
Number of fusenes (not necessarily planar) of perimeter 2n, counted up to rotations and turning over.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 2, 12, 14, 50, 97, 313
Offset: 1
A258205
Number of strictly non-overlapping holeless polyhexes of perimeter 2n with bilateral symmetry, counted up to rotation.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 1, 8, 5, 20, 11, 61
Offset: 1
Showing 1-10 of 15 results.
Comments