cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A028377 Expansion of Product_{m>0} (1+q^m)^(m(m+1)/2).

Original entry on oeis.org

1, 1, 3, 9, 19, 46, 100, 218, 460, 965, 1975, 3993, 7975, 15712, 30650, 59150, 113093, 214300, 402812, 751165, 1390714, 2557004, 4670770, 8479232, 15302657, 27462424, 49021252, 87057783, 153850769, 270614429, 473850031, 826125184, 1434286323, 2480145226
Offset: 0

Views

Author

Keywords

Comments

Convolved with aerated A000294: [1, 0, 2, 0, 4, 0, 10, 0, 26, ...] = A000294. - Gary W. Adamson, Jun 13 2009
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(n+1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i*(i+1)/2, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[i*(i+1)/2, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

a(n) ~ 7^(1/8) * exp(2 * 7^(1/4) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) + 3^(3/2) * 5^(1/2) * Zeta(3) * n^(1/2) / (2 * 7^(1/2) * Pi^2) - 3^(13/4) * 5^(5/4) * Zeta(3)^2 * n^(1/4) / (4 * 7^(5/4) * Pi^5) + 2025 * Zeta(3)^3 / (98*Pi^8)) / (2^(49/24) * 15^(1/8) * n^(5/8)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 11 2015
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(d+1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^3)). - Ilya Gutkovskiy, May 28 2018

A258341 Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)).

Original entry on oeis.org

1, 2, 7, 24, 65, 184, 487, 1254, 3145, 7706, 18480, 43490, 100692, 229472, 515802, 1144416, 2508948, 5439642, 11671859, 24801738, 52221911, 109013538, 225718717, 463769652, 945915199, 1915895576, 3854803572, 7706786958, 15314564282, 30255672820, 59440488874
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(2025*Zeta(3)^3 / (49*Pi^8) - 135*(15/14)^(1/4) * Zeta(3)^2 / (14*Pi^5) * n^(1/4) + 3*sqrt(15/14) * Zeta(3) / Pi^2 * sqrt(n) + 2*(14/15)^(1/4)*Pi/3 * n^(3/4)), where Zeta(3) = A002117.

A258344 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)).

Original entry on oeis.org

1, 0, 2, 6, 13, 32, 69, 160, 344, 760, 1601, 3384, 7022, 14434, 29361, 59140, 118089, 233754, 459293, 895382, 1733904, 3334914, 6374654, 12111632, 22881777, 42993244, 80362496, 149464404, 276657082, 509740278, 935046158, 1707916988, 3106810873, 5629121054
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 7^(1/8) / (2^(43/24) * 15^(1/8) * n^(5/8)) * exp(-2025*Zeta(3)^3 / (49*Pi^8) - 135*(15/14)^(1/4) * Zeta(3)^2 / (14*Pi^5) * n^(1/4) - 3*sqrt(15/14) * Zeta(3) / Pi^2 * sqrt(n) + 2*(14/15)^(1/4)*Pi/3 * n^(3/4)), where Zeta(3) = A002117.

A258342 Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)*(k+2)).

Original entry on oeis.org

1, 6, 39, 224, 1131, 5412, 24411, 105078, 435048, 1740312, 6755877, 25533330, 94205738, 340064322, 1203313782, 4180514846, 14279610417, 48013553310, 159086287869, 519912616614, 1677331973910, 5345927500226, 16843574682291, 52494817082952, 161923200857711
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)*(k+2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 3^(1/5) * Zeta(5)^(1/10) / (2^(91/120) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401*Pi^16 / (1749600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - Zeta(3)^2 / (25*Zeta(5)) + (343*Pi^12/(405000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (750 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (180000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5) * Zeta(3) / (2^(3/5) * (5*Zeta(5))^(2/5))) * n^(2/5) + 7*Pi^4 / (180 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5)) * n^(3/5) + 5*3^(2/5) * (5*Zeta(5)/2)^(1/5)/4 * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

A258345 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 135, 354, 972, 2684, 6990, 17802, 44627, 111582, 277329, 684164, 1671984, 4050096, 9735209, 23238480, 55120950, 129940442, 304502583, 709464798, 1643920584, 3789158988, 8690016942, 19833550266, 45056952957, 101900481462, 229462378987
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 3^(1/5) * Zeta(5)^(1/10) / (2^(91/120) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1749600000000*Zeta(5)^3) + 49 * Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - Zeta(3)^2 / (25*Zeta(5)) + (-343 * Pi^12 / (405000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (750 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (180000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5) * Zeta(3) / (2^(3/5) * (5*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5)) * n^(3/5) + 5*3^(2/5) * ((5*Zeta(5))/2)^(1/5)/4 * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

A258346 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)/6).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 20, 39, 72, 144, 280, 567, 1112, 2187, 4204, 8073, 15309, 28986, 54548, 102286, 190881, 354717, 656194, 1208712, 2217624, 4052633, 7379630, 13390098, 24215587, 43649482, 78435884, 140513905, 250988186, 447037367, 794031641, 1406585604
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(1/10) / (2^(523/720) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (10497600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (16200000 * Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + (-343*Pi^12 / (2430000000 * 2^(3/5) * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (1080000 * 2^(1/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * (15*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(4/5) * (15*Zeta(5))^(3/5)) * n^(3/5) + 5*(15*Zeta(5))^(1/5) / 2^(12/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

A294842 Expansion of Product_{k>=1} (1 + x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 6, 24, 73, 238, 722, 2175, 6343, 18177, 50982, 140671, 382227, 1023623, 2706184, 7067324, 18250671, 46635309, 117997008, 295794098, 735030985, 1811435607, 4429226677, 10749552338, 25903858181, 62000039513, 147435739522, 348431110651, 818549931526, 1912010876019, 4441687009798
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^3 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002411(k).
a(n) ~ exp(-2401 * Pi^16 / (2^12 * 3^11 * 5^8 * Zeta(5)^3) + (343 * Pi^12 / (2^(38/5) * 3^(37/5) * 5^(36/5) * Zeta(5)^(11/5))) * n^(1/5) - (49*Pi^8 / (2^(31/5) * 3^(24/5) * 5^(22/5) * Zeta(5)^(7/5))) * n^(2/5) + (7*Pi^4 / (2^(14/5) * 3^(16/5) * 5^(8/5) * Zeta(5)^(3/5))) * n^(3/5) + (5 * 3^(2/5) * (5*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(167/240) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A305206 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 2, 9, 36, 190, 1070, 6797, 46942, 350901, 2806187, 23894662, 215598410, 2053090936, 20557071012, 215697357449, 2364810631734, 27023086395647, 321160376470277, 3962047673946906, 50648323260067319, 669819485900273336, 9150740338219903590, 128965789655207156299
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(n+k-2,n-1).

A281156 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k+1)/6).

Original entry on oeis.org

1, 1, 5, 19, 54, 165, 467, 1317, 3599, 9687, 25519, 66203, 169254, 426750, 1062950, 2616818, 6373911, 15369774, 36716706, 86939235, 204152395, 475631501, 1099874363, 2525418842, 5759549109, 13050991205, 29391523405, 65801951770, 146486952644, 324340095729, 714389015139
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Weigh transform of square pyramidal numbers (A000330).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k+1)/6).
a(n) ~ exp(5*(15*Zeta(5))^(1/5) * n^(4/5) / 2^(11/5) + 7*Pi^4 * n^(3/5) / (360*2^(2/5) * (15*Zeta(5))^(3/5)) + (Zeta(3) / (2^(13/5) * (15*Zeta(5))^(2/5)) - 49*Pi^8 / (2160000 * 2^(3/5) * 15^(2/5) * Zeta(5)^(7/5)))*n^(2/5) + (343*Pi^12 / (9720000000 * 2^(4/5) * 15^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (18000 * 2^(4/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + 49*Pi^8 * Zeta(3) / (129600000 * Zeta(5)^2) - 2401 * Pi^16 / (83980800000000 * Zeta(5)^3) - Zeta(3)^2 / (1200*Zeta(5))) * (3*Zeta(5))^(1/10) / (2^(11/18) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 09 2017

A294843 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002412(k).
a(n) ~ exp(-2401 * Pi^16 / (671846400000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (518400000 * Zeta(5)^2) - Zeta(3)^2 / (2400*Zeta(5)) + (343 * Pi^12 / (77760000000 * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4*Zeta(3) / (72000 * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (8640000 * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (8 * (15*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (720 * (15*Zeta(5))^(3/5))) * n^(3/5) + (5*(15*Zeta(5))^(1/5)/4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (2^(173/360) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017
Showing 1-10 of 20 results. Next