cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A000294 Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).

Original entry on oeis.org

1, 1, 4, 10, 26, 59, 141, 310, 692, 1483, 3162, 6583, 13602, 27613, 55579, 110445, 217554, 424148, 820294, 1572647, 2992892, 5652954, 10605608, 19765082, 36609945, 67405569, 123412204, 224728451, 407119735, 733878402, 1316631730, 2351322765, 4180714647, 7401898452, 13051476707, 22922301583, 40105025130, 69909106888, 121427077241, 210179991927, 362583131144
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n if there are k(k+1)/2 kinds of k (k=1,2,...). E.g., a(3)=10 because we have six kinds of 3, three kinds of 2+1 because there are three kinds of 2 and 1+1+1+1. - Emeric Deutsch, Mar 23 2005
Euler transform of the triangular numbers 1,3,6,10,...
Equals A028377: [1, 1, 3, 9, 19, 46, 100, ...] convolved with the aerated version of A000294: [1, 0, 1, 0, 4, 0, 10, 0, 26, 0, 59, ...]. - Gary W. Adamson, Jun 13 2009
The formula for p3(n) in the article by S. Finch (page 2) is incomplete, terms with n^(1/2) and n^(1/4) are also needed. These terms are in the article by Mustonen and Rajesh (page 2) and agree with my results, but in both articles the multiplicative constant is marked only as C, resp. c3(m). The following is a closed form of this constant: Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8)) / (A^(1/2) * 2^(157/96) * 15^(13/96)) = A255939 = 0.213595160470..., where A = A074962 is the Glaisher-Kinkelin constant and Zeta(3) = A002117. - Vaclav Kotesovec, Mar 11 2015 [The new version of "Integer Partitions" by S. Finch contains the missing terms, see pages 2 and 5. - Vaclav Kotesovec, May 12 2015]
Number of solid partitions of corner-hook volume n (see arXiv:2009.00592 among links for definition). E.g., a(2) = 1 because there is only one solid partition [[[2]]] with cohook volume 2; a(3) = 4 because we have three solid partitions with two 1's (entry at (1,1,1) contributes 1, another entry at (2,1,1) or (1,2,1) or (1,1,2) contributes 2 to corner-hook volume) and one solid partition with single entry 3 (which contributes 3 to the corner-hook volume). Namely as 3D arrays [[[1],[1]]],[[[1]],[[1]]],[[[1]],[[1]]], [[[3]]]. - Alimzhan Amanov, Jul 13 2021

References

  • R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139.
  • V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A278403 (log of o.g.f.).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> n*(n+1)/2): seq(a(n), n=0..30);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1/(2*n)*Sum[(DivisorSigma[2, k]+DivisorSigma[3, k])*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)/2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 11 2015 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^3/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(n+1, 2))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = (1/(2*n))*Sum_{k=1..n} (sigma[2](k)+sigma[3](k))*a(n-k). - Vladeta Jovovic, Sep 17 2002
a(n) ~ Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(7/4)*Pi^5) + 15^(1/2) * Zeta(3) * n^(1/2) / (2^(1/2)*Pi^2) + 2^(7/4) * Pi * n^(3/4) / (3*15^(1/4))) / (A^(1/2) * 2^(157/96) * 15^(13/96) * n^(61/96)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 11 2015
G.f.: exp(Sum_{k>=1} (sigma_2(k) + sigma_3(k))*x^k/(2*k)). - Ilya Gutkovskiy, Aug 21 2018

Extensions

More terms from Sascha Kurz, Aug 15 2002

A028364 Triangle T(n,m) = Sum_{k=0..m} Catalan(n-k)*Catalan(k).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 9, 14, 14, 19, 23, 28, 42, 42, 56, 66, 76, 90, 132, 132, 174, 202, 227, 255, 297, 429, 429, 561, 645, 715, 785, 869, 1001, 1430, 1430, 1859, 2123, 2333, 2529, 2739, 3003, 3432, 4862, 4862, 6292, 7150, 7810, 8398, 8986, 9646, 10504, 11934, 16796
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364.
The subtriangle [1], [2, 3], [5, 7, 9], ..., namely T(N,M-1), for N >= 1, M=1..N, appears as one-point function in the totally asymmetric exclusion process for the parameters alpha=1=beta. See the Derrida et al. and Liggett references given under A067323, where these triangle entries are called T_{N,N+M-1} for the given alpha and beta values. See the row reversed triangle A067323.
Consider a Dyck path as a path with steps N=(0,1) and E=(1,0) from (0,0) to (n,n) that stays weakly above y=x. T(n,m) is the number of Dyck paths of semilength n+1 where the (m+1)st north step is followed by an east step. - Lara Pudwell, Apr 12 2023

Examples

			Triangle begins
   1;
   1,  2;
   2,  3,  5;
   5,  7,  9, 14;
  14, 19, 23, 28, 42;
		

Crossrefs

Cf. A000108 (column 0 and main diagonal), A001700 (row sums), A065097 (T(2*n-1, n-1)), A201205 (central terms).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b((n+1)$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    t[n_, k_] = Sum[CatalanNumber[n-j]*CatalanNumber[j], {j, 0, k}]; Flatten[Table[t[n, k], {n, 0, 8}, {k, 0, n}]] (* Jean-François Alcover, Jul 22 2011 *)

Formula

T(n,k) = Sum_{j>=0} A039598(k,j)*A039599(n-k,j). - Philippe Deléham, Feb 18 2004
Sum_{k>=0} T(n,k) = A001700(n). T(n,k) = A067323(n,n-k), n >= k >= 0, otherwise 0. - Philippe Deléham, May 26 2005
G.f. for column sequences m >= 0: (-(c(m,x)-1)/x+c(m,x)*c(x))/x^m with the g.f. c(x) of A000108 (Catalan) and c(m,x):=sum(C(k)*x^k,k=0..m) with C(n):=A000108(n). - Wolfdieter Lang, Mar 24 2006
G.f. for column sequences m >= 0 (without leading zeros): c(x)*Sum_{k=0..m} C(m,k)*c(x)^k with the g.f. c(x) of A000108 (Catalan) and C(n,m) is the Catalan triangle A033184(n,m). - Wolfdieter Lang, Mar 24 2006
T(n,n) = T(n,k) + T(n,n-1-k) = A000108(n+1), n > 0, k = 0..floor((n+1)/2). - Yuchun Ji, Jan 09 2019
G.f. for triangle: Sum_{n>=0, m>=0} T(n, m)*x^n*y^m = (c(x)-c(xy))/(x(1-y)c(x)) with the g.f. c(x) of A000108 (Catalan). - Lara Pudwell, Apr 12 2023

A258343 Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)*(k+2)/6).

Original entry on oeis.org

1, 1, 4, 14, 36, 101, 260, 669, 1669, 4116, 9932, 23636, 55483, 128532, 294422, 667026, 1496232, 3324720, 7323570, 15998749, 34679966, 74622839, 159454379, 338472749, 713956569, 1496950669, 3120663129, 6469901522, 13343153563, 27379250529, 55907749171
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(binomial(i+2, 3), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 28 2018
  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)*(k+2)/6),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(1/10) / (2^(523/720) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (10497600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (16200000 * Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + (343*Pi^12 / (2430000000 * 2^(3/5) * 15^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (1080000 * 2^(1/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * (15*Zeta(5))^(2/5))) * n^(2/5) + 7*Pi^4 / (180 * 2^(4/5) * (15*Zeta(5))^(3/5)) * n^(3/5) + 5*(15*Zeta(5))^(1/5) / 2^(12/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^4)). - Ilya Gutkovskiy, May 28 2018

A027999 Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.

Original entry on oeis.org

1, 0, 1, 3, 6, 13, 24, 49, 91, 181, 334, 632, 1163, 2138, 3880, 7006, 12531, 22279, 39369, 69078, 120597, 209282, 361405, 620829, 1061687, 1807014, 3062642, 5168784, 8688820, 14549659, 24274226, 40353748, 66854518, 110391391, 181695436, 298129605, 487706902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(binomial(i, 2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[Binomial[i, 2], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(-2025 * Zeta(3)^3 / (98*Pi^8) - 135*(15/7)^(1/4) * Zeta(3)^2 / (28*Pi^5) * n^(1/4) - 3*sqrt(15/7) * Zeta(3) / (2*Pi^2) * sqrt(n) + 2*(7/15)^(1/4) * Pi/3 * n^(3/4)), where Zeta(3) = A002117. - Vaclav Kotesovec, May 27 2015

A258341 Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)).

Original entry on oeis.org

1, 2, 7, 24, 65, 184, 487, 1254, 3145, 7706, 18480, 43490, 100692, 229472, 515802, 1144416, 2508948, 5439642, 11671859, 24801738, 52221911, 109013538, 225718717, 463769652, 945915199, 1915895576, 3854803572, 7706786958, 15314564282, 30255672820, 59440488874
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(2025*Zeta(3)^3 / (49*Pi^8) - 135*(15/14)^(1/4) * Zeta(3)^2 / (14*Pi^5) * n^(1/4) + 3*sqrt(15/14) * Zeta(3) / Pi^2 * sqrt(n) + 2*(14/15)^(1/4)*Pi/3 * n^(3/4)), where Zeta(3) = A002117.

A258344 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)).

Original entry on oeis.org

1, 0, 2, 6, 13, 32, 69, 160, 344, 760, 1601, 3384, 7022, 14434, 29361, 59140, 118089, 233754, 459293, 895382, 1733904, 3334914, 6374654, 12111632, 22881777, 42993244, 80362496, 149464404, 276657082, 509740278, 935046158, 1707916988, 3106810873, 5629121054
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 7^(1/8) / (2^(43/24) * 15^(1/8) * n^(5/8)) * exp(-2025*Zeta(3)^3 / (49*Pi^8) - 135*(15/14)^(1/4) * Zeta(3)^2 / (14*Pi^5) * n^(1/4) - 3*sqrt(15/14) * Zeta(3) / Pi^2 * sqrt(n) + 2*(14/15)^(1/4)*Pi/3 * n^(3/4)), where Zeta(3) = A002117.

A258342 Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)*(k+2)).

Original entry on oeis.org

1, 6, 39, 224, 1131, 5412, 24411, 105078, 435048, 1740312, 6755877, 25533330, 94205738, 340064322, 1203313782, 4180514846, 14279610417, 48013553310, 159086287869, 519912616614, 1677331973910, 5345927500226, 16843574682291, 52494817082952, 161923200857711
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)*(k+2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 3^(1/5) * Zeta(5)^(1/10) / (2^(91/120) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401*Pi^16 / (1749600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - Zeta(3)^2 / (25*Zeta(5)) + (343*Pi^12/(405000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (750 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (180000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5) * Zeta(3) / (2^(3/5) * (5*Zeta(5))^(2/5))) * n^(2/5) + 7*Pi^4 / (180 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5)) * n^(3/5) + 5*3^(2/5) * (5*Zeta(5)/2)^(1/5)/4 * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

A258345 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 135, 354, 972, 2684, 6990, 17802, 44627, 111582, 277329, 684164, 1671984, 4050096, 9735209, 23238480, 55120950, 129940442, 304502583, 709464798, 1643920584, 3789158988, 8690016942, 19833550266, 45056952957, 101900481462, 229462378987
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 3^(1/5) * Zeta(5)^(1/10) / (2^(91/120) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1749600000000*Zeta(5)^3) + 49 * Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - Zeta(3)^2 / (25*Zeta(5)) + (-343 * Pi^12 / (405000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (750 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (180000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5) * Zeta(3) / (2^(3/5) * (5*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5)) * n^(3/5) + 5*3^(2/5) * ((5*Zeta(5))/2)^(1/5)/4 * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

A258346 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)/6).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 20, 39, 72, 144, 280, 567, 1112, 2187, 4204, 8073, 15309, 28986, 54548, 102286, 190881, 354717, 656194, 1208712, 2217624, 4052633, 7379630, 13390098, 24215587, 43649482, 78435884, 140513905, 250988186, 447037367, 794031641, 1406585604
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(1/10) / (2^(523/720) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (10497600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (16200000 * Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + (-343*Pi^12 / (2430000000 * 2^(3/5) * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (1080000 * 2^(1/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * (15*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(4/5) * (15*Zeta(5))^(3/5)) * n^(3/5) + 5*(15*Zeta(5))^(1/5) / 2^(12/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

A294102 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-1)/2).

Original entry on oeis.org

1, 1, 5, 17, 44, 127, 332, 866, 2182, 5412, 13119, 31292, 73516, 170136, 388829, 877653, 1959111, 4327221, 9464856, 20511598, 44067446, 93901142, 198539477, 416696608, 868448305, 1797890682, 3698350956, 7561361750, 15369154555, 31064311255, 62449795986, 124895635385, 248538538858, 492207649241
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal numbers (A000326).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000326(k).
a(n) ~ exp(-225*Zeta(3)^3 / (98*Pi^8) - 9 * 5^(5/4) * Zeta(3)^2 / (4 * 7^(5/4) * Pi^5) * n^(1/4) - (3*sqrt(5/7) * Zeta(3) / (2*Pi^2)) * sqrt(n) + (2 * (7/5)^(1/4) * Pi / 3) * n^(3/4)) * 7^(1/8) / (2^(47/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017
Showing 1-10 of 33 results. Next