A259755 Numbers that are congruent to {4, 20} mod 24.
4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 172, 188, 196, 212, 220, 236, 244, 260, 268, 284, 292, 308, 316, 332, 340, 356, 364, 380, 388, 404, 412, 428, 436, 452, 460, 476, 484, 500, 508, 524, 532, 548, 556, 572, 580, 596, 604, 620, 628
Offset: 1
Links
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Magma
[2*(6*n+(-1)^n-3): n in [1..60]]; // Vincenzo Librandi, Aug 27 2015
-
Mathematica
A[n_] := A[n] = Sum[a b, {a, 1,n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 3/4 &] Table[2 (6 n + (-1)^n - 3), {n, 1, 60}] (* Bruno Berselli, Oct 23 2015 *) LinearRecurrence[{1,1,-1},{4,20,28},60] (* Harvey P. Dale, Jul 19 2016 *)
-
PARI
vector(100, n, 2*(6*n+(-1)^n-3)) \\ Altug Alkan, Oct 23 2015
Formula
a(n) = 2*(6*n + (-1)^n - 3).
A259748(a(n))/a(n) = 3/4.
a(n) = 4*A007310(n). - Michel Marcus, Sep 22 2015
G.f.: 4*x*(1 + 4*x + x^2) / ((1 + x)*(1 - x)^2). - Bruno Berselli, Oct 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(2 + (6*x - 3)*exp(x) + exp(-x)). - David Lovler, Sep 05 2022
Extensions
Better name from Danny Rorabaugh, Oct 22 2015