cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259755 Numbers that are congruent to {4, 20} mod 24.

Original entry on oeis.org

4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 172, 188, 196, 212, 220, 236, 244, 260, 268, 284, 292, 308, 316, 332, 340, 356, 364, 380, 388, 404, 412, 428, 436, 452, 460, 476, 484, 500, 508, 524, 532, 548, 556, 572, 580, 596, 604, 620, 628
Offset: 1

Views

Author

Keywords

Crossrefs

Other sequences of numbers k such that A259748(k)/k equals a constant: A008606, A073762, A259749, A259750, A259751, A259752, A259754.

Programs

  • Magma
    [2*(6*n+(-1)^n-3): n in [1..60]]; // Vincenzo Librandi, Aug 27 2015
    
  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 3/4 &]
    Table[2 (6 n + (-1)^n - 3), {n, 1, 60}] (* Bruno Berselli, Oct 23 2015 *)
    LinearRecurrence[{1,1,-1},{4,20,28},60] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    vector(100, n, 2*(6*n+(-1)^n-3)) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = 2*(6*n + (-1)^n - 3).
A259748(a(n))/a(n) = 3/4.
a(n) = 4*A007310(n). - Michel Marcus, Sep 22 2015
G.f.: 4*x*(1 + 4*x + x^2) / ((1 + x)*(1 - x)^2). - Bruno Berselli, Oct 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(2 + (6*x - 3)*exp(x) + exp(-x)). - David Lovler, Sep 05 2022

Extensions

Better name from Danny Rorabaugh, Oct 22 2015