Original entry on oeis.org
26459, 37304, 47669, 57600, 63315, 71091, 86324, 88244, 92204, 92663, 115191, 132066, 136065, 138194, 142748, 170289, 252090, 283829, 296226, 316965, 323873, 336104, 369585, 372878, 385650, 389024, 393444, 408645, 438683, 471540, 487710, 498974, 544580, 562275
Offset: 1
A067813
Start of a record-breaking run of consecutive integers with a number of prime factors (counted with multiplicity) equal to 3.
Original entry on oeis.org
8, 27, 170, 602, 2522, 211673
Offset: 1
a(4)=602 because 602 is the start of a record breaking run of 5 consecutive integers (602 to 606) each having 3 prime factors; i.e. bigomega(n)=A001222(n)=3 for n = 602, ..., 606.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==3, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
Module[{nn=8,po},po=PrimeOmega[Range[5000000]];Flatten[Table[ SequencePosition[ po,PadRight[{},n,3],1],{n,nn}],1]][[All,1]]//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 14 2019 *)
-
show(lim)=my(was,r,ct); forfactored(n=2, lim\1+1, is=vecsum(n[2][, 2])==3; if(is, ct++; if(ct>r, r=ct; print(r" "n[1]-r+1)),ct=0)) \\ Charles R Greathouse IV, Jun 26 2019
A375239
Numbers k such that k, k+1, ..., k+5 all have 3 prime factors (counted with multiplicity).
Original entry on oeis.org
2522, 4921, 18241, 25553, 27290, 40313, 90834, 95513, 98282, 98705, 117002, 120962, 136073, 136865, 148682, 153794, 181441, 181554, 185825, 211673, 211674, 212401, 215034, 216361, 231002, 231665, 234641, 236041, 236634, 266282, 281402, 285410, 298433, 298434, 330473, 331985, 346505, 381353
Offset: 1
a(3) = 18241 is a term because
18241 = 17 * 29 * 37
18242 = 2 * 7 * 1303
18243 = 3^2 * 2027
18244 = 2^2 * 4561
18245 = 5 * 41 * 89
18246 = 2 * 3 * 3041
are all products of 3 primes (counted with multiplicity).
-
R:= NULL: count:= 0: p:= 1:
while count < 100 do
p:= nextprime(p);
x:= 4*p;
if andmap(t -> numtheory:-bigomega(t)=3, [x-2,x-1,x+1,x+2]) then
if numtheory:-bigomega(x-3) = 3 then R:= R, x-3; count:= count+1; fi;
if numtheory:-bigomega(x+3) = 3 then R:= R, x-2; count:= count+1; fi;
fi;
od:
R;
-
s = {}; Do[If[{3, 3, 3, 3, 3, 3} == PrimeOmega[Range[k, k + 5]],
AppendTo[s, k]], {k, 1000000}]; s
Showing 1-3 of 3 results.
Comments