A269551
Expansion of (3*x^2 + 258*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
5, 237, 22965, 2250077, 220484325, 21605213517, 2117090440085, 207453257914557, 20328302185186245, 1991966160890337197, 195192355465067858805, 19126858869415759825437, 1874236976847279395033765, 183656096872163964953483277, 17996423256495221286046327125, 1763465823039659522067586574717
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3*x^2+258*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(3 x^2 + 258 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[8/3 + (-(3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) + (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
Vec((3*x^2 + 258*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (3*x^2+258*x-5)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269548
Expansion of (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
-1, -233, -22961, -2250073, -220484321, -21605213513, -2117090440081, -207453257914553, -20328302185186241, -1991966160890337193, -195192355465067858801, -19126858869415759825433, -1874236976847279395033761, -183656096872163964953483273, -17996423256495221286046327121
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(-7 x^2 + 134 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[4/3 + ((3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) - (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
Vec((-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269549
Expansion of (-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
1, -199, -19799, -1940399, -190139599, -18631740599, -1825720439399, -178901971320799, -17530567468999199, -1717816709990600999, -168328507011609898999, -16494475870427779501199, -1616290306794910781218799, -158379955590030828779941399, -15519619357516226309653038599
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-x^2+298*x-1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(-x^2 + 298 x - 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[37/12 + ((2 Sqrt[6] - 5)/(2 Sqrt[6] + 5)^(2 n) - (2 Sqrt[6] + 5) (2 Sqrt[6] + 5)^(2 n)) 5/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
Vec((-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (-x^2+298*x-1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269550
Expansion of (-5*x^2 + 228*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
7, 465, 45347, 4443325, 435400287, 42664784585, 4180713488827, 409667257120245, 40143210484294967, 3933624960203786305, 385455102889486762707, 37770666458209498958765, 3701139857801641411196047, 362673935398102648798253625, 35538344529156257940817658987
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
I:=[7,465,45347]; [n le 3 select I[n] else 99*Self(n-1)+-99*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Feb 29 2016
-
LinearRecurrence[{99, -99, 1}, {7, 465, 45347}, 20] (* Vincenzo Librandi, Feb 29 2016 *)
-
Vec((-5*x^2 + 228*x - 7)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
A269552
Expansion of (-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
3, 203, 19803, 1940403, 190139603, 18631740603, 1825720439403, 178901971320803, 17530567468999203, 1717816709990601003, 168328507011609899003, 16494475870427779501203, 1616290306794910781218803, 158379955590030828779941403, 15519619357516226309653038603, 1520764317081000147517217841603
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99, -99, 1).
-
CoefficientList[Series[(-3x^2+94x-3)/(x^3-99x^2+99x-1),{x,0,20}],x] (* or *) LinearRecurrence[{99,-99,1},{3,203,19803},20] (* Harvey P. Dale, Jan 14 2019 *)
-
Vec((-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
A269553
Expansion of (-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
-3, -435, -42763, -4190475, -410623923, -40236954115, -3942810879483, -386355229235355, -37858869654185443, -3709782870880938195, -363520862476677757803, -35621334739843539326635, -3490527283642190176252563, -342036052462194793733424675, -33516042614011447595699365723
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
LinearRecurrence[{99, -99, 1}, {-3, -435, -42763}, 20] (* Paolo Xausa, Mar 04 2024 *)
-
Vec((-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
A269554
Expansion of (3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
-1, -343, -33861, -3318283, -325158121, -31862177823, -3122168268781, -305940628162963, -29979059391701841, -2937641879758617703, -287858925156952833301, -28207237023501619046043, -2764021369378001713679161, -270845886962020666321511983, -26540132900908647297794495421
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3*x^2+244*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016
-
CoefficientList[Series[(3 x^2 + 244 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[31/12 + ((17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) - (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)
LinearRecurrence[{99,-99,1},{-1,-343,-33861},20] (* Harvey P. Dale, Feb 03 2025 *)
-
Vec((3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (3*x^2+244*x+1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
A269555
Expansion of (x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
7, 439, 42767, 4190479, 410623927, 40236954119, 3942810879487, 386355229235359, 37858869654185447, 3709782870880938199, 363520862476677757807, 35621334739843539326639, 3490527283642190176252567, 342036052462194793733424679, 33516042614011447595699365727, 3284230140120659669584804416319
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^2+254*x-7)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(x^2 + 254 x - 7)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[31/12 + (-(22 Sqrt[6] - 53)/(2 Sqrt[6] + 5)^(2 n) + (22 Sqrt[6] + 53) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
LinearRecurrence[{99,-99,1},{7,439,42767},20] (* Harvey P. Dale, Apr 10 2019 *)
-
Vec((x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (x^2+254*x-7)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269556
Expansion of (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
5, 347, 33865, 3318287, 325158125, 31862177827, 3122168268785, 305940628162967, 29979059391701845, 2937641879758617707, 287858925156952833305, 28207237023501619046047, 2764021369378001713679165, 270845886962020666321511987, 26540132900908647297794495425, 2600662178402085414517539039527
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016
-
CoefficientList[Series[(-7 x^2 + 148 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[17/12 + (-(17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) + (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)
-
Vec((-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
Showing 1-9 of 9 results.
Comments