A261004
Expansion of (-3-164*x-x^2)/(1-99*x+99*x^2-x^3).
Original entry on oeis.org
-3, -461, -45343, -4443321, -435400283, -42664784581, -4180713488823, -409667257120241, -40143210484294963, -3933624960203786301, -385455102889486762703, -37770666458209498958761, -3701139857801641411196043, -362673935398102648798253621, -35538344529156257940817658983
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Kwang-Wu Chen, Extensions of an amazing identity of Ramanujan, Fib. Q., 50 (2012), 227-230.
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99, -99, 1).
-
LinearRecurrence[{99,-99,1},{-3,-461,-45343},30] (* Harvey P. Dale, Dec 02 2017 *)
-
Vec((-3-164*x-x^2)/(1-99*x+99*x^2-x^3) + O(x^20)) \\ Michel Marcus, Feb 29 2016
A269548
Expansion of (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
-1, -233, -22961, -2250073, -220484321, -21605213513, -2117090440081, -207453257914553, -20328302185186241, -1991966160890337193, -195192355465067858801, -19126858869415759825433, -1874236976847279395033761, -183656096872163964953483273, -17996423256495221286046327121
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(-7 x^2 + 134 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[4/3 + ((3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) - (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
Vec((-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269549
Expansion of (-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
1, -199, -19799, -1940399, -190139599, -18631740599, -1825720439399, -178901971320799, -17530567468999199, -1717816709990600999, -168328507011609898999, -16494475870427779501199, -1616290306794910781218799, -158379955590030828779941399, -15519619357516226309653038599
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-x^2+298*x-1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(-x^2 + 298 x - 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[37/12 + ((2 Sqrt[6] - 5)/(2 Sqrt[6] + 5)^(2 n) - (2 Sqrt[6] + 5) (2 Sqrt[6] + 5)^(2 n)) 5/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
-
Vec((-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (-x^2+298*x-1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269550
Expansion of (-5*x^2 + 228*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
7, 465, 45347, 4443325, 435400287, 42664784585, 4180713488827, 409667257120245, 40143210484294967, 3933624960203786305, 385455102889486762707, 37770666458209498958765, 3701139857801641411196047, 362673935398102648798253625, 35538344529156257940817658987
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
I:=[7,465,45347]; [n le 3 select I[n] else 99*Self(n-1)+-99*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Feb 29 2016
-
LinearRecurrence[{99, -99, 1}, {7, 465, 45347}, 20] (* Vincenzo Librandi, Feb 29 2016 *)
-
Vec((-5*x^2 + 228*x - 7)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
A269552
Expansion of (-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
3, 203, 19803, 1940403, 190139603, 18631740603, 1825720439403, 178901971320803, 17530567468999203, 1717816709990601003, 168328507011609899003, 16494475870427779501203, 1616290306794910781218803, 158379955590030828779941403, 15519619357516226309653038603, 1520764317081000147517217841603
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99, -99, 1).
-
CoefficientList[Series[(-3x^2+94x-3)/(x^3-99x^2+99x-1),{x,0,20}],x] (* or *) LinearRecurrence[{99,-99,1},{3,203,19803},20] (* Harvey P. Dale, Jan 14 2019 *)
-
Vec((-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
A269553
Expansion of (-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
-3, -435, -42763, -4190475, -410623923, -40236954115, -3942810879483, -386355229235355, -37858869654185443, -3709782870880938195, -363520862476677757803, -35621334739843539326635, -3490527283642190176252563, -342036052462194793733424675, -33516042614011447595699365723
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
LinearRecurrence[{99, -99, 1}, {-3, -435, -42763}, 20] (* Paolo Xausa, Mar 04 2024 *)
-
Vec((-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
A269554
Expansion of (3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
-1, -343, -33861, -3318283, -325158121, -31862177823, -3122168268781, -305940628162963, -29979059391701841, -2937641879758617703, -287858925156952833301, -28207237023501619046043, -2764021369378001713679161, -270845886962020666321511983, -26540132900908647297794495421
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3*x^2+244*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016
-
CoefficientList[Series[(3 x^2 + 244 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[31/12 + ((17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) - (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)
LinearRecurrence[{99,-99,1},{-1,-343,-33861},20] (* Harvey P. Dale, Feb 03 2025 *)
-
Vec((3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (3*x^2+244*x+1)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
A269555
Expansion of (x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
7, 439, 42767, 4190479, 410623927, 40236954119, 3942810879487, 386355229235359, 37858869654185447, 3709782870880938199, 363520862476677757807, 35621334739843539326639, 3490527283642190176252567, 342036052462194793733424679, 33516042614011447595699365727, 3284230140120659669584804416319
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^2+254*x-7)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
-
CoefficientList[Series[(x^2 + 254 x - 7)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[31/12 + (-(22 Sqrt[6] - 53)/(2 Sqrt[6] + 5)^(2 n) + (22 Sqrt[6] + 53) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
LinearRecurrence[{99,-99,1},{7,439,42767},20] (* Harvey P. Dale, Apr 10 2019 *)
-
Vec((x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (x^2+254*x-7)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
A269556
Expansion of (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
Original entry on oeis.org
5, 347, 33865, 3318287, 325158125, 31862177827, 3122168268785, 305940628162967, 29979059391701845, 2937641879758617707, 287858925156952833305, 28207237023501619046047, 2764021369378001713679165, 270845886962020666321511987, 26540132900908647297794495425, 2600662178402085414517539039527
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016
-
CoefficientList[Series[(-7 x^2 + 148 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[17/12 + (-(17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) + (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)
-
Vec((-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
gf = (-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
A386550
Indices of hexagonal numbers that are six times another hexagonal number.
Original entry on oeis.org
0, 2, 176, 17222, 1687556, 165363242, 16203910136, 1587817830062, 155589943435916, 15246226638889682, 1493974620667752896, 146394266598800894102, 14345144152061819869076, 1405677732635459546275322, 137742072654122973715112456, 13497317442371415964534745342
Offset: 1
176 is in this sequence because the 176th hexagonal number (61776) is six times another hexagonal number.
Showing 1-10 of 10 results.
Comments