cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A260273 Successively add the smallest nonzero binary number that is not a substring.

Original entry on oeis.org

1, 3, 5, 8, 11, 15, 17, 20, 23, 27, 31, 33, 36, 39, 44, 51, 56, 61, 65, 68, 71, 76, 81, 84, 87, 91, 95, 99, 104, 111, 115, 120, 125, 129, 132, 135, 140, 145, 148, 151, 157, 165, 168, 171, 175, 179, 186, 190, 194, 199, 204, 209, 216, 223, 227, 232, 241, 246
Offset: 1

Views

Author

Alex Meiburg, Jul 22 2015

Keywords

Comments

a(n) is at least Omega(n), at most O(n*log(n)).
The empirical approximation n*(log(n)/2 + exp(1)) is startlingly close to tight, compared with many increasing upper bounds.
A261644(n) = A062383(a(n)) - a(n). - Reinhard Zumkeller, Aug 30 2015

Examples

			Begin with a(1)=1, in binary, "1". This contains the string "1" but not "10", so we add 2. Thus a(2)=1+2=3. This also contains "1" but not "10", so we move to a(3)=3+2=5. This contains "1" and "10" but not "11", so we add 3. Thus a(4)=5+3=8. (See A261018 for the successive numbers that are added. - _N. J. A. Sloane_, Aug 17 2015)
		

Crossrefs

See A261922 and A261461 for the smallest missing number function; also A261923, A262279, A261281.
See also A261396 (when a(n) just passes a power of 2), A261416 (the limiting behavior just past a power of 2).
First differences are A261018.
A262288 is the decimal analog.

Programs

  • Haskell
    a260273 n = a260273_list !! (n-1)
    a260273_list = iterate (\x -> x + a261461 x) 1
    -- Reinhard Zumkeller, Aug 30 2015, Aug 17 2015
    
  • Java
    public static void main(String[] args) {
       int a=1;
       for(int iter=0;iter<100;iter++){
           System.out.print(a+", ");
           int inc;
           for(inc=1; contains(a,inc); inc++);
           a+=inc;
       }
    }
    static boolean contains(int a,int test){
       int mask=(Integer.highestOneBit(test)<<1)-1;
       while(a >= test){
           if((a & mask) == test) return true;
           a >>= 1;
       }
       return false;
    }
    
  • Mathematica
    sublistQ[L1_, L2_] := Module[{l1 = Length[L1], l2 = Length[L2], k}, If[l2 <= l1, For[k = 1, k <= l1 - l2 + 1, k++, If[L1[[k ;; k + l2 - 1]] == L2, Return[True]]]]; False];
    a[1] = 1; a[n_] := a[n] = Module[{bb = IntegerDigits[a[n-1], 2], k}, For[k = 1, sublistQ[bb, IntegerDigits[k, 2]], k++]; a[n-1] + k]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 01 2016 *)
    NestList[Function[k, k + FromDigits[#, 2] &@ SelectFirst[IntegerDigits[Range[2^8], 2], Length@ SequencePosition[IntegerDigits[k, 2], #] == 0 &]], 1, 64] (* Michael De Vlieger, Apr 01 2016, Version 10.1 *)
  • Python
    A260273_list, a = [1], 1
    for i in range(10**3):
        b, s = 1, format(a,'b')
        while format(b,'b') in s:
            b += 1
        a += b
        s = format(a,'b')
        A260273_list.append(a) # Chai Wah Wu, Aug 26 2015

Formula

a(n+1) = a(n) + A261461(a(n)). - Reinhard Zumkeller, Aug 30 2015

A261416 Let b(k) denote A260273(k). It appears that for k >= 200, whenever b(k) just passes a power of 2, 2^m say, the successive differences b(k)-2^m converge to this sequence.

Original entry on oeis.org

2, 5, 8, 11, 17, 20, 23, 29, 38, 43, 49, 54, 61, 70, 75, 81, 84, 87, 93, 102, 107, 114, 119, 128, 131, 136, 139, 145, 148, 151, 157, 167, 173, 180, 187, 196, 201, 206, 211, 218, 225, 230, 235, 244, 253, 262, 267, 273, 276, 279, 285, 294, 299, 305, 310, 317, 327, 333, 340, 343, 349, 358, 365, 372, 381
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2015

Keywords

Comments

It would be nice to have an independent characterization of this sequence.
A partial answer: set a(0)=2, and for n>0, a(n) = A261281(a(n-1)). - N. J. A. Sloane, Sep 17 2015

Examples

			At k=200, b(k)=b(200)=1026 has just passed 2^10. The successive differences b(200+i)-2^10 (i>=0) beyond this point are 2, 5, 8, 11, 17, 20, 23, 29, 38, 43, 49, 54, 61, 70, 75, 81, 84, 87, 93, 102, 107, 114, 119, 128, 131, 136, 139, 145, 148, 151, 157, [165, ...], which are the first 31 terms of the present sequence.
At k=371, b(371)=2050, and the successive differences b(371+i)-2^11 are 2, 5, ..., 279, 285, ... giving the first 51 terms of the present sequence.
		

Crossrefs

Cf. A260273, A261281. For when A260273 just passes a power of 2, see A261396.

A261644 Distance of A260273(n) to next power of 2.

Original entry on oeis.org

1, 1, 3, 8, 5, 1, 15, 12, 9, 5, 1, 31, 28, 25, 20, 13, 8, 3, 63, 60, 57, 52, 47, 44, 41, 37, 33, 29, 24, 17, 13, 8, 3, 127, 124, 121, 116, 111, 108, 105, 99, 91, 88, 85, 81, 77, 70, 66, 62, 57, 52, 47, 40, 33, 29, 24, 15, 10, 6, 2, 254, 251, 248, 245, 239
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 30 2015

Keywords

Comments

This sequence, as well as A261712, is suggested by A261396 and A261416.

Examples

			.  1: 1
.  2: 1
.  3: 3
.  4: 8,5,1
.  5: 15,12,9,5,1
.  6: 31,28,25,20,13,8,3
.  7: 63,60,57,52,47,44,41,37,33,29,24,17,13,8,3
.  8: 127,124,121,116,111,108,105,99,91,88,85,81,77,70,... (27 terms)
.  9: 254,251,248,245,239,236,233,227,218,213,207,202,195,,... (49 terms)
		

Crossrefs

Cf. A260273, A062383, A261645 (first differences), A261712 (reversed), A261646 (row lengths).

Programs

  • Haskell
    a261644 n = a261644_list !! (n-1)
    a261644_list = zipWith (-)
                   (map a062383 a260273_list) $ map fromIntegral a260273_list
    a261644_tabf = [1] : f (tail $ zip a261645_list a261644_list) where
       f dxs = (map snd (dxs'' ++ [dx])) : f dxs' where
         (dxs'', dx:dxs') = span ((<= 0) . fst) dxs
    a261644_row n = a261644_tabf !! (n-1)

Formula

a(n) = A062383(A260273(n)) - A260273(n).

A261646 Row lengths in A261644.

Original entry on oeis.org

1, 1, 1, 3, 5, 7, 15, 27, 49, 90, 171, 326, 613, 1174, 2255, 4333, 8386, 16213, 31457, 61097, 118577, 230322, 447767, 870570, 1693887, 3297343, 6423347, 12523562, 24435171, 47707012, 93215393, 182260604, 356622869, 698284551, 1368195878, 2682527954, 5262729874, 10330704931
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 31 2015

Keywords

Comments

First differences of A261396;
also row lengths in A261712.

Crossrefs

Programs

  • Haskell
    a261646 = length . a261644_row

Formula

a(n) = A261396(n) - A261396(n-1).

Extensions

a(21)-a(38) from Chai Wah Wu, Aug 31 2015

A261788 a(n) is the smallest k such that A261786(k) >= 3^n.

Original entry on oeis.org

1, 2, 5, 12, 30, 81, 224, 626, 1747, 4909, 13811, 38934, 109889, 310666, 880125, 2500221, 7125406, 20376598, 58472481, 168349612, 486198698, 1408140693, 4088769215, 11899761717, 34703682407
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 01 2015

Keywords

Crossrefs

Programs

  • Haskell
    a261788 n = a261788_list !! (n-1)
    a261788_list = f 1 1 a261786_list' where
       f z k (x:xs) | x >= z    = k : f (3 * z) (k + 1) xs
                    | otherwise = f z (k + 1) xs
    
  • PARI
    ts(n) = Str(fromdigits(digits(n, 3))); \\ A007089
    f(n) = my(s=ts(n), k=1); while (#strsplit(s, ts(k)) != 1, k++); k; \\ A261787
    lista(nn) = my(last=1, k=0, p=3^k); for (n=1, nn, if (last >= p, print1(n, ", "); k++; p = 3^k); last += f(last);); \\ Michel Marcus, Feb 06 2022

Extensions

a(11)-a(20) from Michel Marcus, Feb 06 2022
a(21)-a(24) from Jinyuan Wang, Dec 13 2024
Showing 1-5 of 5 results.