A262582
Concatenation of the numbers from 1 to n but omitting 12.
Original entry on oeis.org
1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891011, 123456789101113, 12345678910111314, 1234567891011131415, 123456789101113141516, 12345678910111314151617, 1234567891011131415161718, 123456789101113141516171819, 12345678910111314151617181920
Offset: 1
See
A262300 for more about this problem.
-
Module[{nn=30, c}, c=Drop[Range[nn], {12}]; Table[FromDigits[Flatten[IntegerDigits/@Take[c, n]]], {n, nn - 1}]] (* Vincenzo Librandi, Nov 05 2018 *)
A262300
Let S(n,k) denote the number formed by concatenating the decimal numbers 1,2,3,...,k, but omitting n; a(n) is the smallest k for which S(n,k) is prime, or -1 if no term in S(n,*) is prime.
Original entry on oeis.org
2, 3, 7, 9, 11, 7, 11, 1873, 19, 14513, 13, 961
Offset: 1
a(5) = 11 because the smallest prime in S(5,*) (A262575) is 123467891011.
a(8) = 1873 (corresponding to the 6364-digit probable prime 1234567910111213...1873) was found by David Broadhurst on Sep 27 2015.
a(9) = 19 because the smallest prime in S(9,*) is 1234567810111213141516171819.
a(10) = 14513 (corresponding to the 61457-digit probable prime 123456789111213...14513) was found by David Broadhurst on Sep 28 2015.
See also
A007908 (which plays the role of S(0,*)).
-
A262300[n_] := Module[{k = 1}, While[! PrimeQ[FromDigits[Flatten[Map[IntegerDigits, Complement[Range[k], {n}]]]]], k++]; k];
Table[A262300[n], {n, 12}] (* Robert Price, Oct 27 2018 *)
-
s(n, k) = my(s=""); for(x=1, k, if(x!=n, s=concat(s, x))); eval(Str(s))
a(n) = for(k=1, oo, my(s=s(n, k)); if(ispseudoprime(s), return(k))) \\ Felix Fröhlich, Oct 27 2018
A262571
Concatenation of the numbers from 2 to n.
Original entry on oeis.org
2, 23, 234, 2345, 23456, 234567, 2345678, 23456789, 2345678910, 234567891011, 23456789101112, 2345678910111213, 234567891011121314, 23456789101112131415, 2345678910111213141516, 234567891011121314151617, 23456789101112131415161718, 2345678910111213141516171819
Offset: 2
For primes in this sequence see
A089987.
See
A262300 for more about this problem.
-
[Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [2..n]])): n in [2..20]]; // Vincenzo Librandi, Oct 29 2018
-
Table[FromDigits[Flatten[IntegerDigits[Range[2, n]]]], {n, 2, 19}] (* Robert Price, Oct 28 2018 *)
-
def a(n): return int("".join(map(str, range(2, n+1))))
print([a(n) for n in range(2, 20)]) # Michael S. Branicky, Feb 23 2021
A262572
Concatenation of the numbers from 1 to n but omitting 2.
Original entry on oeis.org
1, 13, 134, 1345, 13456, 134567, 1345678, 13456789, 1345678910, 134567891011, 13456789101112, 1345678910111213, 134567891011121314, 13456789101112131415, 1345678910111213141516, 134567891011121314151617, 13456789101112131415161718, 1345678910111213141516171819, 134567891011121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
DeleteDuplicates[Table[FromDigits[Flatten[IntegerDigits[Complement[Range[n], {2}]]]], {n, 20}]] (* Robert Price, Nov 05 2018 *)
A262575
Concatenation of the numbers from 1 to n but omitting 5.
Original entry on oeis.org
1, 12, 123, 1234, 12346, 123467, 1234678, 12346789, 1234678910, 123467891011, 12346789101112, 1234678910111213, 123467891011121314, 12346789101112131415, 1234678910111213141516, 123467891011121314151617, 12346789101112131415161718, 1234678910111213141516171819, 123467891011121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
DeleteDuplicates[Table[FromDigits[Flatten[IntegerDigits[Complement[Range[n], {5}]]]], {n, 20}]] (* Robert Price, Nov 05 2018 *)
Join[{1,12,123,1234},Table[FromDigits[Flatten[IntegerDigits/@Drop[Range[n],{5}]]],{n,6,20}]] (* Harvey P. Dale, Jan 28 2024 *)
A262581
Concatenation of the numbers from 1 to n but omitting 11.
Original entry on oeis.org
1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891012, 123456789101213, 12345678910121314, 1234567891012131415, 123456789101213141516, 12345678910121314151617, 1234567891012131415161718, 123456789101213141516171819, 12345678910121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
DeleteDuplicates[Table[FromDigits[Flatten[IntegerDigits[Complement[Range[n], {11}]]]], {n, 20}]] (* Robert Price, Nov 05 2018 *)
-
terms(n) = my(s="", i=0); for(k=1, n, if(k!=11, s=concat(s, Str(k)); print1(eval(s), ", "); i++); if(i==n, break))
/* Print initial 20 terms as follows */
terms(20) \\ Felix Fröhlich, Nov 05 2018
A262573
Concatenation of the numbers from 1 to n but omitting 3.
Original entry on oeis.org
1, 12, 124, 1245, 12456, 124567, 1245678, 12456789, 1245678910, 124567891011, 12456789101112, 1245678910111213, 124567891011121314, 12456789101112131415, 1245678910111213141516, 124567891011121314151617, 12456789101112131415161718, 1245678910111213141516171819, 124567891011121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
DeleteDuplicates[Table[FromDigits[Flatten[IntegerDigits[Complement[Range[n], {3}]]]], {n, 20}]] (* Robert Price, Nov 05 2018 *)
Join[{1,12},Table[FromDigits[Join[{1,2},Flatten[IntegerDigits/@Range[4,n]]]],{n,4,20}]] (* Harvey P. Dale, Sep 17 2019 *)
A262574
Concatenation of the numbers from 1 to n but omitting 4.
Original entry on oeis.org
1, 12, 123, 1235, 12356, 123567, 1235678, 12356789, 1235678910, 123567891011, 12356789101112, 1235678910111213, 123567891011121314, 12356789101112131415, 1235678910111213141516, 123567891011121314151617, 12356789101112131415161718, 1235678910111213141516171819, 123567891011121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
DeleteDuplicates[Table[FromDigits[Flatten[IntegerDigits[Complement[Range[n], {4}]]]], {n, 20}]] (* Robert Price, Nov 05 2018 *)
A262576
Concatenation of the numbers from 1 to n but omitting 6.
Original entry on oeis.org
1, 12, 123, 1234, 12345, 123457, 1234578, 12345789, 1234578910, 123457891011, 12345789101112, 1234578910111213, 123457891011121314, 12345789101112131415, 1234578910111213141516, 123457891011121314151617, 12345789101112131415161718, 1234578910111213141516171819, 123457891011121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
Module[{nn=20,c},c=Drop[Range[nn],{6}];Table[FromDigits[Flatten[ IntegerDigits/@ Take[c,n]]],{n,nn-1}]] (* Harvey P. Dale, Sep 27 2018 *)
A262577
Concatenation of the numbers from 1 to n but omitting 7.
Original entry on oeis.org
1, 12, 123, 1234, 12345, 123456, 1234568, 12345689, 1234568910, 123456891011, 12345689101112, 1234568910111213, 123456891011121314, 12345689101112131415, 1234568910111213141516, 123456891011121314151617, 12345689101112131415161718, 1234568910111213141516171819, 123456891011121314151617181920
Offset: 1
See
A262300 for more about this problem.
-
DeleteDuplicates@ Table[If[n >= 7, FromDigits@ Delete[Flatten[IntegerDigits /@ Range[n + 1]], 7], FromDigits@ Flatten[IntegerDigits /@ Range@ n]], {n, 19}] (* Michael De Vlieger, Oct 13 2015 *)
Showing 1-10 of 13 results.
Comments