cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008705 Coefficient of x^n in (Product_{m=1..n}(1-x^m))^n.

Original entry on oeis.org

1, -1, -1, 5, -5, -6, 11, 41, -125, -85, 1054, -2069, -209, 8605, -15625, 3990, 14035, 36685, -130525, -254525, 1899830, -3603805, -134905, 13479425, -25499225, 23579969, -64447293, 237487433, -133867445, -1795846200, 6309965146, -6788705842, -11762712973
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Degree of resulting polynomial is A002411(n). - Michel Marcus, Sep 05 2013
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k. - Peter Bala, Jan 31 2022
Conjectures: the supercongruences a(p) == -1 - p (mod p^2) and a(2*p) == p - 1 (mod p^2) hold for all primes p >= 3. - Peter Bala, Apr 18 2023

Examples

			(1-x)^1 = -x + 1, hence a(1) = -1.
(1-x^2)^2*(1-x)^2 = x^6 - 2*x^5 - x^4 + 4*x^3 - x^2 - 2*x + 1, hence a(2) = -1.
		

Crossrefs

Bisections: A262308, A262309.
Main diagonal of A286354.

Programs

  • Maple
    C5:=proc(r) local t1,n; t1:=mul((1-x^n)^r,n=1..r+2); series(t1,x,r+1); coeff(%,x,r); end;
    [seq(C5(i),i=0..30)]; # N. J. A. Sloane, Oct 04 2015
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, -k*
          add(numtheory[sigma](j)*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    With[{m = 40}, Table[SeriesCoefficient[Series[(Product[1-x^j, {j, n}])^n, {x, 0, m}], n], {n, 0, m}]] (* G. C. Greubel, Sep 09 2019 *)
  • PARI
    a(n) = polcoeff(prod(m = 1, n, (1-x^m)^n), n); \\ Michel Marcus, Sep 05 2013

Formula

a(n) = [x^n] exp(-n*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, May 30 2018

Extensions

More terms from Michel Marcus, Sep 05 2013
a(0)=1 prepended by N. J. A. Sloane, Oct 04 2015

A262309 Bisection of A008705.

Original entry on oeis.org

1, -1, -5, 11, -125, 1054, -209, -15625, 14035, -130525, 1899830, -134905, -25499225, -64447293, -133867445, 6309965146, -11762712973, -29646853725, -160561408097, -1495301415045, 24032249395590, -42497223256645, -176218120143125, 271151209742715, -6483574667232425
Offset: 0

Views

Author

N. J. A. Sloane, Oct 04 2015

Keywords

Crossrefs

A262538 Bisection of A262310.

Original entry on oeis.org

-1, -7, 9, -176, -673, 1143, 33201, 315783, 2210985, 1790369, 44496424, 1040502519, -1810005816, 7445790947, -134133273672, -627282760902, 7903957116411, -22364317249111, -200569974966918, 510174845699733, 15061484475966460, 42739249663260682, 758042190595492047
Offset: 0

Views

Author

N. J. A. Sloane, Oct 04 2015

Keywords

Crossrefs

A262541 Bisection of A262539.

Original entry on oeis.org

-3, -12, 1107, 33345, 151593, -17376120, -544200660, -2551628817, 298555990425, 9538198578972, 47571625958796, -5260288747038957, -171603777320158968, -932936371186135044, 93260709219956914584, 3120592373597958070140, 18795651984942284003265
Offset: 0

Views

Author

N. J. A. Sloane, Oct 04 2015

Keywords

Crossrefs

A262542 List of numbers arising in Theorem 5 of Morris Newman's "Further identities and congruences for the coefficients of modular forms".

Original entry on oeis.org

6, 10, 17, 18, 24, 27, 57, 68, 69, 74, 90, 95, 98, 103, 123, 127, 131, 163, 179, 197, 204, 210, 238, 239, 249, 250, 253, 256, 258, 259, 270, 274, 278, 282, 292, 326, 349, 359, 360, 364, 373, 374, 376, 378, 400, 407, 424, 425, 447, 448, 451, 454, 474, 480, 492, 493, 507, 558, 563, 569
Offset: 1

Views

Author

N. J. A. Sloane, Oct 04 2015

Keywords

Comments

These are exactly the numbers n such that A010819(n) = 0 mod 13 and 24*n + 11 is squarefree. - Robin Visser, Jul 24 2023

Crossrefs

Cf. A010819.

Programs

  • Sage
    for n in range(1, 1000):
        p11 = product([(1 - x^k)^11 for k in range(1, n+1)])
        p11n = int(p11.taylor(x, 0, n).coefficients()[n][0])
        if (p11n%13 == 0) and (24*n + 11).is_squarefree():
            print(n)  # Robin Visser, Jul 24 2023

Extensions

More terms from Robin Visser, Jul 24 2023
Showing 1-5 of 5 results.