cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A262442 a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(n+k-1,n-k)).

Original entry on oeis.org

1, 1, 3, 12, 53, 244, 1152, 5531, 26875, 131760, 650492, 3229368, 16105344, 80624935, 404913225, 2039146908, 10293657125, 52071019600, 263888886528, 1339540863092, 6809667715812, 34663102092960, 176655038497000, 901269559693104
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 23 2015

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1, n-k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
    
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n-1, n-k] Binomial[ n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • Maxima
    a(n):=sum(binomial(n, k)*binomial(n+k-2, n-k-1), k, 0, n-1)/n;
    A(x):=sum(a(n)*x^n, n, 1, 30);
    taylor(x*diff(A(x),x)/A(x)-x^2*diff(1/x-1/A(x),x),x,0,10);
    
  • PARI
    a(n) = sum(k=0,n,(binomial(n-1,n-k)*binomial(n+k-1,n-k))) \\ Anders Hellström, Sep 23 2015

Formula

G.f.: 1+A'(x)*(x*A(x)-x^2)/A(x)^2, where A(x) is g.f. of A109081.
Recurrence: 2*(n-1)*(2*n - 1)*(38*n^2 - 162*n + 163)*a(n) = 2*(380*n^4 - 2380*n^3 + 5200*n^2 - 4676*n + 1431)*a(n-1) + 2*(n-2)*(76*n^3 - 362*n^2 + 502*n - 189)*a(n-2) + 3*(n-3)*(n-2)*(38*n^2 - 86*n + 39)*a(n-3). - Vaclav Kotesovec, Sep 23 2015
a(n) = n*hypergeom([1 - n, 1 - n, n + 1], [1, 3/2], 1/4) for n >= 1. - Peter Luschny, Mar 07 2022

A372410 Coefficient of x^n in the expansion of ( (1-x+x^2) / (1-x)^3 )^n.

Original entry on oeis.org

1, 2, 12, 77, 516, 3552, 24891, 176647, 1265508, 9132530, 66288762, 483442434, 3539626635, 26002266656, 191556630375, 1414649524077, 10469628711396, 77630719516650, 576585458828844, 4288881479411395, 31945446999811266, 238233164413294792, 1778587750475510316
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=1, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^2) ). See A366049.

A350290 a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n, k) * binomial(n + k - 1, n - k).

Original entry on oeis.org

1, 1, -3, -2, 21, -4, -150, 155, 1029, -2072, -6468, 22056, 34122, -208857, -106249, 1816958, -639067, -14629264, 17635800, 108117620, -239571684, -711876496, 2628772968, 3825823888, -25582846134, -10997156129, 227594431035, -98360217830, -1864646227185
Offset: 0

Views

Author

Peter Luschny, Mar 07 2022

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^(n - k)*binomial(n, k)*binomial(n + k - 1, n-k), k = 0..n):
    seq(a(n), n = 0..28);
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+k-1, n-k)); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = (-1)^(n-1)*n^2*hypergeom([1 - n, 1 - n, n + 1], [3/2, 2], -1/4) for n >= 1.
D-finite with recurrence 4*n*(2*n-1)*(9789*n-26254)*a(n) +2*(28924*n^3-27550*n^2-236727*n+284748)*a(n-1) +2*(342172*n^3-1352012*n^2+1027500*n+356439)*a(n-2) -2*(n-3)*(43143*n^2-783097*n+1918735)*a(n-3) -5*(5116*n-30173)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
Showing 1-3 of 3 results.