cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262440 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k-1,n-k).

Original entry on oeis.org

1, 1, 5, 22, 101, 476, 2282, 11075, 54245, 267592, 1327580, 6617128, 33110090, 166215895, 836761343, 4222640822, 21354409445, 108193910000, 549084400088, 2790744368660, 14203023709276, 72371208424880, 369170645788840, 1885051297844624
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 23 2015

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 13 2015
    
  • Mathematica
    Join[{1}, Table[Sum[ Binomial[n,k] Binomial[n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • Maxima
    a(n):=sum(binomial(n,k)*binomial(n+k-2,n-k-1),k,0,n-1)/n;
    A(x):=sum(a(n)*x^n,n,1,30);
    taylor(diff(A(x),x)/A(x)*x,x,0,10);
    
  • PARI
    a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k-1,n-k))) \\ Anders Hellström, Sep 23 2015

Formula

G.f.: x*A'(x)/A(x), where A(x) is g.f. of A109081.
Recurrence: 2*n*(2*n-1)*(38*n^3 - 210*n^2 + 377*n - 219)*a(n) = 2*(380*n^5 - 2480*n^4 + 5998*n^3 - 6598*n^2 + 3219*n - 540)*a(n-1) + 2*(n-2)*(76*n^4 - 382*n^3 + 572*n^2 - 300*n + 45)*a(n-2) + 3*(n-3)*(n-2)*(38*n^3 - 96*n^2 + 71*n - 14)*a(n-3). - Vaclav Kotesovec, Sep 23 2015
a(n) = n^2*hypergeom([1-n, 1-n, n+1], [3/2, 2], 1/4) for n >= 1. - Peter Luschny, Mar 06 2022
a(n) = [x^n] ( (1 - x + x^2) / (1 - x)^2 )^n. - Seiichi Manyama, Apr 29 2024
a(n) ~ sqrt((513 - 67*sqrt(57))^(1/3) + (513 + 67*sqrt(57))^(1/3)) * (10 + (1261 - 57*sqrt(57))^(1/3) + (1261 + 57*sqrt(57))^(1/3))^n / (19^(1/3) * sqrt(Pi*n) * 2^(n + 5/6) * 3^(n + 1/3)). - Vaclav Kotesovec, Apr 30 2024

A350290 a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n, k) * binomial(n + k - 1, n - k).

Original entry on oeis.org

1, 1, -3, -2, 21, -4, -150, 155, 1029, -2072, -6468, 22056, 34122, -208857, -106249, 1816958, -639067, -14629264, 17635800, 108117620, -239571684, -711876496, 2628772968, 3825823888, -25582846134, -10997156129, 227594431035, -98360217830, -1864646227185
Offset: 0

Views

Author

Peter Luschny, Mar 07 2022

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^(n - k)*binomial(n, k)*binomial(n + k - 1, n-k), k = 0..n):
    seq(a(n), n = 0..28);
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+k-1, n-k)); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = (-1)^(n-1)*n^2*hypergeom([1 - n, 1 - n, n + 1], [3/2, 2], -1/4) for n >= 1.
D-finite with recurrence 4*n*(2*n-1)*(9789*n-26254)*a(n) +2*(28924*n^3-27550*n^2-236727*n+284748)*a(n-1) +2*(342172*n^3-1352012*n^2+1027500*n+356439)*a(n-2) -2*(n-3)*(43143*n^2-783097*n+1918735)*a(n-3) -5*(5116*n-30173)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
Showing 1-2 of 2 results.