cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262672 Expansion of (3-x-x^3) / ((x-1)^2*(1+x+x^2+x^3)).

Original entry on oeis.org

3, 2, 2, 1, 4, 3, 3, 2, 5, 4, 4, 3, 6, 5, 5, 4, 7, 6, 6, 5, 8, 7, 7, 6, 9, 8, 8, 7, 10, 9, 9, 8, 11, 10, 10, 9, 12, 11, 11, 10, 13, 12, 12, 11, 14, 13, 13, 12, 15, 14, 14, 13, 16, 15, 15, 14, 17, 16, 16, 15, 18, 17, 17, 16, 19, 18, 18, 17, 20, 19, 19, 18, 21
Offset: 0

Views

Author

Wesley Ivan Hurt, Sep 26 2015

Keywords

Comments

From Altug Alkan, Sep 29 2015: (Start)
Sequence can be defined as a composition of arithmetic sequences and it can be generated by the equations: a(4k) = k+3, a(4k+3) = k+1, a(4k+1) = a(4k+2) = k+2, with k >= 0.
Obviously, minimum value of sequence is a(3), which is also unique value that has no repetition in sequence. (End)

Examples

			G.f. = 3 + 2*x + 2*x^2 + x^3 + 4*x^4 + 3*x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 4*x^9 + ...
		

Crossrefs

Row 2 of the example in A238340 (read from bottom).

Programs

  • Magma
    [(2*n+13+5*(-1)^n-6*(-1)^((2*n+3+(-1)^n) div 4))/8 : n in [0..100]];
    
  • Magma
    &cat[[3+n,2+n,2+n,1+n]: n in [0..20]]; // Bruno Berselli, Sep 29 2015
    
  • Magma
    I:=[3,2,2,1,4]; [n le 5 select I[n] else Self(n-1) + Self(n-4) - Self(n-5): n in [1..100]]; // Vincenzo Librandi, Sep 29 2015
    
  • Maple
    A262672:=n->(2*n+13+5*(-1)^n-6*(-1)^((2*n+3+(-1)^n)/4))/8: seq(A262672(n), n=0..100);
  • Mathematica
    Table[(2n + 13 + 5 (-1)^n - 6 (-1)^((2n + 3 + (-1)^n)/4))/8, {n, 0, 100}]
    LinearRecurrence[{1, 0, 0, 1, -1}, {3, 2, 2, 1, 4}, 100] (* Vincenzo Librandi, Sep 29 2015 *)
    CoefficientList[Series[(3-x-x^3)/((x-1)^2(1+x+x^2+x^3)),{x,0,100}],x] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    a(n) = (2*n+13+5*(-1)^n-6*(-1)^((2*n+3+(-1)^n)/4))/8;
    vector(80, n, a(n-1)) \\ Altug Alkan, Sep 29 2015
    
  • PARI
    {a(n) = my(k = n\4); [ 3, 2, 2, 1][n%4 + 1] + k}; /* Michael Somos, Oct 02 2015 */

Formula

G.f.: (3-x-x^3) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5), for n>4
a(n) = ( 2*n + 13+5*(-1)^n - 6*(-1)^((2*n + 3 + (-1)^n)/4) )/8.
a(n) = 3*A002265(n+4) - A002265(n+3) - A002265(n+1).
a(2n) = A028242(n+4), a(2n+1) = A028242(n+2).
4*a(n) = |A118402(n+8)| + 3*i^(n*(n-1)), where i=sqrt(-1). [Bruno Berselli, Sep 29 2015]
E.g.f.: (1/8)*(2*x*exp(x) + 5*exp(-x) + 13*exp(x) + 6*sin(x) + 6*cos(x)). - G. C. Greubel, Sep 29 2015
a(n) = -a(-13 - n) for all n in Z. - Michael Somos, Oct 02 2015

Extensions

Edited by Bruno Berselli, Sep 30 2015