cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A359452 Number of vertices in the partite set of the n-Menger sponge graph that contains the corners.

Original entry on oeis.org

1, 8, 208, 3968, 80128, 1599488, 32002048, 639991808, 12800032768, 255999868928, 5120000524288, 102399997902848, 2048000008388608, 40959999966445568, 819200000134217728, 16383999999463129088, 327680000002147483648, 6553599999991410065408, 131072000000034359738368
Offset: 0

Views

Author

Allan Bickle, Jan 02 2023

Keywords

Comments

This sequence and the sequence counting the non-corner vertices (A359453) alternate as to which is larger.

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359453 (number of non-corner vertices).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.
Cf. A262710.

Programs

Formula

a(n) = (20^n + (-4)^n)/2.
a(n) = (A009964(n) + A262710(n))/2.
a(n) = 20^n - A359453(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: (1 - 8*x)/((1 - 20*x)*(1 + 4*x)).
E.g.f.: exp(8*x)*cosh(12*x). (End)

A359453 Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners.

Original entry on oeis.org

0, 12, 192, 4032, 79872, 1600512, 31997952, 640008192, 12799967232, 256000131072, 5119999475712, 102400002097152, 2047999991611392, 40960000033554432, 819199999865782272, 16384000000536870912, 327679999997852516352, 6553600000008589934592, 131071999999965640261632
Offset: 0

Views

Author

Allan Bickle, Jan 02 2023

Keywords

Comments

This sequence and the sequence counting the corner vertices (A359452) alternate as to which is larger.

Examples

			The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph.  This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452 (number of corner vertices).
Cf. A291066, A083233, and A332705 on the surface area of the n-Menger sponge graph.

Programs

Formula

a(n) = (20^n - (-4)^n)/2.
a(n) = (A009964(n) - A262710(n))/2.
a(n) = 20^n - A359452(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: 12*x/((1 - 20*x)*(1 + 4*x)).
E.g.f.: (cosh(8*x) + sinh(8*x))*sinh(12*x). (End)

A117411 Skew triangle associated to the Euler numbers.

Original entry on oeis.org

1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0

Views

Author

Paul Barry, Mar 13 2006

Keywords

Comments

Inverse is A117414. Row sums of the inverse are the Euler numbers A000364.
Triangle, read by rows, given by [0,-4,4,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2009

Examples

			Triangle begins
  1;
  0,  1;
  0, -4,   1;
  0,  0, -12,   1;
  0,  0,  16, -24,    1;
  0,  0,   0,  80,  -40,     1;
  0,  0,   0, -64,  240,   -60,      1;
  0,  0,   0,   0, -448,   560,    -84,      1;
  0,  0,   0,   0,  256, -1792,   1120,   -112,      1;
  0,  0,   0,   0,    0,  2304,  -5376,   2016,   -144,      1;
  0,  0,   0,   0,    0, -1024,  11520, -13440,   3360,   -180,    1;
  0,  0,   0,   0,    0,     0, -11264,  42240, -29568,   5280, -220,    1;
  0,  0,   0,   0,    0,     0,   4096, -67584, 126720, -59136, 7920, -264, 1;
		

Crossrefs

Programs

  • Magma
    A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
    [A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
    flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022

Formula

Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117413(n).
T(n, k) = (-4)^(n-k)*Sum_{j=0..n-k} C(n,k-j)*C(j,n-k).
G.f.: (1-x*y)/(1-2x*y+x^2*y(y+4)). - Paul Barry, Mar 14 2006
T(n, k) = (-4)^(n-k)*A098158(n,k). - Philippe Deléham, Nov 01 2009
T(n, k) = 2*T(n-1,k-1) - 4*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 31 2013
From G. C. Greubel, Sep 07 2022: (Start)
T(n, n) = 1.
T(n, n-1) = -4*A000217(n-1), n >= 1.
T(n, n-2) = (-4)^2 * A000332(n), n >= 2.
T(n, n-3) = (-4)^3 * A000579(n), n >= 3.
T(n, n-4) = (-4)^4 * A000581(n), n >= 4.
T(2*n, n) = A262710(n). (End)

A363515 Numerator of log(2) + (-1/4)^n*Integral_{x=0..1} (1 - x)^(4*n+2)/(1 + x^2) dx.

Original entry on oeis.org

1, 79, 14087, 3990557, 217474889, 10326377909, 19001942777579, 3306285643032971, 3279846716611480357, 121354235196693865579, 19902098013482397470501, 1711580361934007500382731, 9009759106282339175994464009, 59689653955233943488755746919, 3820137854975012405338172218301
Offset: 0

Views

Author

Keywords

Comments

From M. F. Hasler, Jul 07 2023: (Start)
Equivalently, numerator of Sum c(n,k)/(k+1), where Sum c(n,k)*x^k = ((1 - x)^(4*n+2)/(-4)^n + 2*x)/(1 + x^2), a polynomial: The integrand (with factor (-1/4)^n) plus 2*x/(1 + x^2) is a polynomial that is easily integrated to yield the fraction a(n)/A363516(n), while Integral(-2*x/(1 + x^2)) = -log(1 + x^2) cancels the log(2).
Since the integrand/integral as a whole is less than 1/4^n in absolute value, it tends to zero and the fraction tends to log(2). (End)

Examples

			n       a(n)/A363516(n)     approximate value
-   -------------------    ------------------
0                     1       1
1                79/120       0.6583333333...
2           14087/20160       0.6987599206...
3       3990557/5765760       0.6921129218...
4   217474889/313657344       0.6933518158...
...
From _M. F. Hasler_, Jul 07 2023: (Start)
Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have:
f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2).
f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence a(1) = 79 and A363516(1) = 120.
f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence a(2) = 14087 and A363516(2) = 20160, etc. (End)
		

Crossrefs

Cf. A002162, A004767, A016825, A262710, A363516 (denominator).

Programs

  • Mathematica
    Numerator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]
  • PARI
    A363515(n) = numerator(subst(intformal(((1-x)^(4*n+2)/(-4)^n+2*x)/(1+x^2)),x,1)) \\ The argument of intformal is a polynomial that is trivially integrated over [0, 1]. - M. F. Hasler, Jul 07 2023

Formula

Numerator of log(2) + HypergeometricPFQ([1/2, 1, 1], [2*(1 + n), 5/2 + 2*n], -1)/((3 + 4*n)*(-4)^n).
Limit_{n->oo} a(n)/A363516(n) = log(2).

A363516 Denominator of log(2) + (-1/4)^n*Integral_{x=0..1} (1 - x)^(4*n+2)/(1 + x^2) dx.

Original entry on oeis.org

1, 120, 20160, 5765760, 313657344, 14898723840, 27413651865600, 4769975424614400, 4731815621217484800, 175077177985046937600, 28712657189547697766400, 2469288518301102007910400, 12998334760337000969640345600, 86113967787232631423867289600, 5511293938382888411127506534400
Offset: 0

Views

Author

Keywords

Comments

Equivalently, denominator of Sum c(n,k)/(k+1), where ((1 - x)^(4*n+2)/(-4)^n + 2*x)/(1 + x^2) = Sum c(n,k)*x^k, a polynomial. In other words, the integrand (with factor (-1/4)^n) plus 2*x/(1 + x^2) is a polynomial that can easily be term-wise integrated to yield the fraction A363515(n)/a(n), while antiderivative(-2*x/(1 + x^2)) = -log(1 + x^2) cancels the log(2). - M. F. Hasler, Jul 07 2023

Examples

			n       A363515(n)/a(n)    approximate value
-   -------------------    -----------------
0                     1      1
1                79/120      0.6583333333...
2           14087/20160      0.6987599206...
3       3990557/5765760      0.6921129218...
4   217474889/313657344      0.6933518158...
...
From _M. F. Hasler_, Jul 07 2023: (Start)
Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have:
f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2), and a(0) = 2 (denominator).
f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence A363515(1) = 79 and a(1) = 120.
f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence A363515(2) = 14087 and a(2) = 20160, etc. (End)
		

Crossrefs

Cf. A002162, A004767, A016825, A262710, A363515 (numerator).

Programs

  • Mathematica
    Denominator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]

Formula

Denominator of log(2) + HypergeometricPFQ([1/2, 1, 1], [2*(1 + n), 5/2 + 2*n], -1)/((3 + 4*n)*(-4)^n).
Limit_{n->oo} A363515(n)/a(n) = log(2).

A350384 a(n) = (-1728)^n.

Original entry on oeis.org

1, -1728, 2985984, -5159780352, 8916100448256, -15407021574586368, 26623333280885243904, -46005119909369701466112, 79496847203390844133441536, -137370551967459378662586974208, 237376313799769806328950291431424, -410186270246002225336426103593500672
Offset: 0

Views

Author

Stefano Spezia, Dec 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1728},{1},12]
    NestList[-1728#&,1,20] (* Harvey P. Dale, Dec 25 2023 *)

Formula

From Caroline Nunn, p. 9: (Start)
a(n) = (3 + sqrt(-3))^(6*n).
a(n) = Sum_{k=0..3*n} (-1)^k*binomial(6*n, 2*k)*3^(6*n-k). (End)
O.g.f.: 1/(1 + 1728*x).
E.g.f.: exp(-1728*x).
a(n) = -1728*a(n-1) for n > 0.
a(n) = (-12)^(3*n).
a(n) = (A000244(n)*A262710(n))^3.
Showing 1-6 of 6 results.