A359452
Number of vertices in the partite set of the n-Menger sponge graph that contains the corners.
Original entry on oeis.org
1, 8, 208, 3968, 80128, 1599488, 32002048, 639991808, 12800032768, 255999868928, 5120000524288, 102399997902848, 2048000008388608, 40959999966445568, 819200000134217728, 16383999999463129088, 327680000002147483648, 6553599999991410065408, 131072000000034359738368
Offset: 0
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 8.
Cf.
A359453 (number of non-corner vertices).
A359453
Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners.
Original entry on oeis.org
0, 12, 192, 4032, 79872, 1600512, 31997952, 640008192, 12799967232, 256000131072, 5119999475712, 102400002097152, 2047999991611392, 40960000033554432, 819199999865782272, 16384000000536870912, 327679999997852516352, 6553600000008589934592, 131071999999965640261632
Offset: 0
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 12.
Cf.
A359452 (number of corner vertices).
A117411
Skew triangle associated to the Euler numbers.
Original entry on oeis.org
1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0
Triangle begins
1;
0, 1;
0, -4, 1;
0, 0, -12, 1;
0, 0, 16, -24, 1;
0, 0, 0, 80, -40, 1;
0, 0, 0, -64, 240, -60, 1;
0, 0, 0, 0, -448, 560, -84, 1;
0, 0, 0, 0, 256, -1792, 1120, -112, 1;
0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1;
0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1;
0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1;
0, 0, 0, 0, 0, 0, 4096, -67584, 126720, -59136, 7920, -264, 1;
-
A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
[A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
-
T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
-
def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022
A363515
Numerator of log(2) + (-1/4)^n*Integral_{x=0..1} (1 - x)^(4*n+2)/(1 + x^2) dx.
Original entry on oeis.org
1, 79, 14087, 3990557, 217474889, 10326377909, 19001942777579, 3306285643032971, 3279846716611480357, 121354235196693865579, 19902098013482397470501, 1711580361934007500382731, 9009759106282339175994464009, 59689653955233943488755746919, 3820137854975012405338172218301
Offset: 0
n a(n)/A363516(n) approximate value
- ------------------- ------------------
0 1 1
1 79/120 0.6583333333...
2 14087/20160 0.6987599206...
3 3990557/5765760 0.6921129218...
4 217474889/313657344 0.6933518158...
...
From _M. F. Hasler_, Jul 07 2023: (Start)
Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have:
f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2).
f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence a(1) = 79 and A363516(1) = 120.
f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence a(2) = 14087 and A363516(2) = 20160, etc. (End)
-
Numerator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]
-
A363515(n) = numerator(subst(intformal(((1-x)^(4*n+2)/(-4)^n+2*x)/(1+x^2)),x,1)) \\ The argument of intformal is a polynomial that is trivially integrated over [0, 1]. - M. F. Hasler, Jul 07 2023
A363516
Denominator of log(2) + (-1/4)^n*Integral_{x=0..1} (1 - x)^(4*n+2)/(1 + x^2) dx.
Original entry on oeis.org
1, 120, 20160, 5765760, 313657344, 14898723840, 27413651865600, 4769975424614400, 4731815621217484800, 175077177985046937600, 28712657189547697766400, 2469288518301102007910400, 12998334760337000969640345600, 86113967787232631423867289600, 5511293938382888411127506534400
Offset: 0
n A363515(n)/a(n) approximate value
- ------------------- -----------------
0 1 1
1 79/120 0.6583333333...
2 14087/20160 0.6987599206...
3 3990557/5765760 0.6921129218...
4 217474889/313657344 0.6933518158...
...
From _M. F. Hasler_, Jul 07 2023: (Start)
Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have:
f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2), and a(0) = 2 (denominator).
f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence A363515(1) = 79 and a(1) = 120.
f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence A363515(2) = 14087 and a(2) = 20160, etc. (End)
-
Denominator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]
A350384
a(n) = (-1728)^n.
Original entry on oeis.org
1, -1728, 2985984, -5159780352, 8916100448256, -15407021574586368, 26623333280885243904, -46005119909369701466112, 79496847203390844133441536, -137370551967459378662586974208, 237376313799769806328950291431424, -410186270246002225336426103593500672
Offset: 0
-
LinearRecurrence[{-1728},{1},12]
NestList[-1728#&,1,20] (* Harvey P. Dale, Dec 25 2023 *)
Showing 1-6 of 6 results.
Comments