cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296077 a(n) = 1 if 1 + A002322(n) is prime, 0 otherwise, where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Comments

Out of the first 65537 values, 39743 are 1's (indicating primes), and 25794 are 0's, indicating nonprimes.

Crossrefs

Characteristic function for A263028.
Cf. A002322, A010051, A263027, A263029 (positions of zeros), A296076, A296079.

Programs

  • Mathematica
    Table[If[PrimeQ[CarmichaelLambda[n]+1],1,0],{n,120}] (* Harvey P. Dale, Sep 23 2020 *)
  • PARI
    A296077(n) = isprime(1+lcm(znstar(n)[2]));

Formula

a(n) = A010051(A263027(n)) = A010051(1+A002322(n)).

A263028 Numbers n such that A002322(n) + 1 is a prime, where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2015

Keywords

Comments

Complement of A263029.

Crossrefs

Cf. A002322, A263027, A263029, A296077 (characteristic function).
Cf. also A039698.

Programs

  • Magma
    [1] cat [n: n in [2..100] | IsPrime(CarmichaelLambda(n)+1)];
    
  • Mathematica
    Select[Range[1, 100], PrimeQ[CarmichaelLambda[#] + 1] &]
  • PARI
    for(n=1, 1e3, if(isprime((1 + lcm(znstar(n)[2]))), print1(n", "))) \\ Altug Alkan, Oct 12 2015

Extensions

More terms from Antti Karttunen, Dec 05 2017

A263027 a(n) = A002322(n) + 1, where A002322 is Carmichael lambda.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 7, 3, 7, 5, 11, 3, 13, 7, 5, 5, 17, 7, 19, 5, 7, 11, 23, 3, 21, 13, 19, 7, 29, 5, 31, 9, 11, 17, 13, 7, 37, 19, 13, 5, 41, 7, 43, 11, 13, 23, 47, 5, 43, 21, 17, 13, 53, 19, 21, 7, 19, 29, 59, 5, 61, 31, 7, 17, 13, 11, 67, 17, 23, 13, 71, 7
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2015

Keywords

Comments

The function t(k,n) = A002322(n)+k provides many prime values for k=1: for n up to 1000, for example, it returns 798 primes (with repetitions). On the other hand, for n <= 1000 and odd k from 3 to 11, t(k,n) gives 247, 387, 538, 231, 504 prime values, respectively.
Another function of this type is |A002322(n)-119|, which provides 693 prime values for n <= 1000. [Bruno Berselli, Oct 14 2015]

Crossrefs

Cf. A002322.
Cf. A263028: indices n for which a(n) is prime.
Cf. A263029: indices n for which a(n) is composite.
Cf. also A039649, A296076, A296077.

Programs

  • Magma
    [2] cat [CarmichaelLambda(n)+1: n in [2..100]];
    
  • Mathematica
    Table[CarmichaelLambda[n] + 1, {n, 1, 100}]
  • PARI
    vector(100, n, 1 + lcm(znstar(n)[2])) \\ Altug Alkan, Oct 08 2015

Extensions

Edited by Bruno Berselli, Oct 14 2015

A039689 Numbers k such that phi(k) + 1 is not a prime.

Original entry on oeis.org

15, 16, 20, 24, 25, 30, 33, 35, 39, 44, 45, 50, 51, 52, 56, 64, 65, 66, 68, 69, 70, 72, 78, 80, 81, 84, 85, 87, 90, 92, 96, 102, 104, 105, 112, 116, 120, 121, 123, 128, 129, 130, 136, 138, 140, 141, 143, 144, 147, 155, 156, 159, 160, 161, 162, 164, 165, 168, 170
Offset: 1

Views

Author

Keywords

Examples

			phi(20)+1 = 8+1 = 9 is not prime.
		

Crossrefs

Cf. A000010, A007614, A039649, A039698 (complement).
Positions of zeros in A296079.
Cf. also A263029.

Programs

  • Mathematica
    Select[Range[200],!PrimeQ[EulerPhi[#]+1]&] (* Harvey P. Dale, Aug 31 2018 *)
  • PARI
    isok(k) = !isprime(eulerphi(k)+1); \\ Michel Marcus, Jun 28 2021

Extensions

Name edited by Antti Karttunen, Dec 05 2017
Showing 1-4 of 4 results.