cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A039698 Numbers k such that phi(k) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 79, 82, 83, 86, 88, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103
Offset: 1

Views

Author

Keywords

Comments

Positive integers k for which values of A039649(k) are primes. - Vladimir Shevelev, May 10 2008
For every prime p, the numbers p and 2p are terms of this sequence. - Vladimir Shevelev, May 10 2008
Union of A000040 and A066071. - Ray Chandler, May 26 2008

Examples

			phi(10)+1 = 4+1 = 5, a prime number, so 10 is a term.
		

Crossrefs

Cf. A039689 (complement), A296079 (characteristic function).

Programs

  • Magma
    [n: n in [1..200] | IsPrime(EulerPhi(n)+1)]; // Vincenzo Librandi, Aug 13 2013
  • Mathematica
    Select[Range[300], PrimeQ[EulerPhi[#] + 1]&] (* Vincenzo Librandi, Aug 13 2013 *)

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar

A296079 a(n) = 1 if 1+phi(n) is prime, 0 otherwise, where phi = A000010, Euler totient function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Comments

Out of the first 65537 values, 26197 are 1's (indicating primes), and 39340 are 0's, indicating nonprimes.

Crossrefs

Characteristic function of A039698.
Cf. A039689 (positions of zeros).
Cf. also A296077, A296078, A296080.

Programs

  • Mathematica
    Table[If[PrimeQ[EulerPhi[n]+1],1,0],{n,120}] (* Harvey P. Dale, Apr 23 2020 *)
  • PARI
    A296079(n) = isprime(1+eulerphi(n));

Formula

a(n) = A010051(A039649(n)) = A010051(1+A000010(n)).
For all n, a(n) >= A010051(n) and a(2n) >= A010051(n).

A263029 Numbers n such that A002322(n) + 1 is not a prime, where A002322 is Carmichael lambda.

Original entry on oeis.org

25, 32, 50, 55, 75, 81, 96, 100, 110, 115, 119, 121, 128, 150, 153, 160, 162, 165, 176, 187, 200, 203, 209, 215, 220, 221, 224, 230, 235, 238, 242, 245, 253, 256, 261, 275, 287, 288, 289, 295, 297, 299, 300, 306, 319, 323, 324, 330, 335, 343, 345, 355
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2015

Keywords

Comments

Complement of A263028.

Crossrefs

Positions of zeros in A296077.
Cf. also A039689.

Programs

  • Magma
    [n: n in [2..400] | not IsPrime(CarmichaelLambda(n)+1)];
    
  • Mathematica
    Select[Range[1, 400], ! PrimeQ[CarmichaelLambda[#] + 1] &]
  • PARI
    for(n=1, 1e3, if(isprime((1 + lcm(znstar(n)[2]))) == 0, print1(n", "))) \\ Altug Alkan, Oct 12 2015
Showing 1-3 of 3 results.