cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A039698 Numbers k such that phi(k) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 79, 82, 83, 86, 88, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103
Offset: 1

Views

Author

Keywords

Comments

Positive integers k for which values of A039649(k) are primes. - Vladimir Shevelev, May 10 2008
For every prime p, the numbers p and 2p are terms of this sequence. - Vladimir Shevelev, May 10 2008
Union of A000040 and A066071. - Ray Chandler, May 26 2008

Examples

			phi(10)+1 = 4+1 = 5, a prime number, so 10 is a term.
		

Crossrefs

Cf. A039689 (complement), A296079 (characteristic function).

Programs

  • Magma
    [n: n in [1..200] | IsPrime(EulerPhi(n)+1)]; // Vincenzo Librandi, Aug 13 2013
  • Mathematica
    Select[Range[300], PrimeQ[EulerPhi[#] + 1]&] (* Vincenzo Librandi, Aug 13 2013 *)

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar

A296078 Least number with the same prime signature as 1+phi(n), where phi = A000010, Euler totient function.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 6, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 6, 4, 6, 2, 6, 12, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 6, 6, 2, 2, 4, 6, 2, 6, 2, 2, 4, 2, 12, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Cf. A039698 (positions of 2's).

Programs

  • Mathematica
    f[n_] := Block[{ps = Last@# & /@ FactorInteger[1 + EulerPhi@n]}, Times @@ ((Prime@ Range@ Length@ ps)^ps)]; Array[f, 105] (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));

Formula

a(n) = A046523(A039649(n)) = A046523(1+A000010(n)).

A296077 a(n) = 1 if 1 + A002322(n) is prime, 0 otherwise, where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Comments

Out of the first 65537 values, 39743 are 1's (indicating primes), and 25794 are 0's, indicating nonprimes.

Crossrefs

Characteristic function for A263028.
Cf. A002322, A010051, A263027, A263029 (positions of zeros), A296076, A296079.

Programs

  • Mathematica
    Table[If[PrimeQ[CarmichaelLambda[n]+1],1,0],{n,120}] (* Harvey P. Dale, Sep 23 2020 *)
  • PARI
    A296077(n) = isprime(1+lcm(znstar(n)[2]));

Formula

a(n) = A010051(A263027(n)) = A010051(1+A002322(n)).

A039689 Numbers k such that phi(k) + 1 is not a prime.

Original entry on oeis.org

15, 16, 20, 24, 25, 30, 33, 35, 39, 44, 45, 50, 51, 52, 56, 64, 65, 66, 68, 69, 70, 72, 78, 80, 81, 84, 85, 87, 90, 92, 96, 102, 104, 105, 112, 116, 120, 121, 123, 128, 129, 130, 136, 138, 140, 141, 143, 144, 147, 155, 156, 159, 160, 161, 162, 164, 165, 168, 170
Offset: 1

Views

Author

Keywords

Examples

			phi(20)+1 = 8+1 = 9 is not prime.
		

Crossrefs

Cf. A000010, A007614, A039649, A039698 (complement).
Positions of zeros in A296079.
Cf. also A263029.

Programs

  • Mathematica
    Select[Range[200],!PrimeQ[EulerPhi[#]+1]&] (* Harvey P. Dale, Aug 31 2018 *)
  • PARI
    isok(k) = !isprime(eulerphi(k)+1); \\ Michel Marcus, Jun 28 2021

Extensions

Name edited by Antti Karttunen, Dec 05 2017

A296212 a(n) = 1 if sigma(n) + 1 is prime, 0 otherwise.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

Characteristic function of A065512, numbers n such that sigma(n) + 1 is prime.

Crossrefs

Programs

Formula

a(n) = A010051(1+A000203(n)) = A010051(A088580(n)).
Showing 1-5 of 5 results.