A171791 G.f. A(x) satisfies: [x^n] A(x)^((n+1)^2) = 0 for n>1 with a(0)=a(1)=1.
1, 1, -4, 25, -194, 1603, -15264, 122316, -1897710, -8845133, -1169435932, -52853978047, -3193246498792, -205347570309000, -14534295599537024, -1115833257773950536, -92445637289048967654, -8219735646409095418617
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - 4*x^2 + 25*x^3 - 194*x^4 + 1603*x^5 +... The coefficients in the square powers of g.f. A(x) begin: A^1: [1, 1, -4, 25, -194, 1603, -15264, 122316, ...]; A^4: [1, 4, -10, 56, -427, 3360, -33546, 218880, ...]; A^9: [1, 9, 0, 21, -252, 1701, -25992, -2970, ...]; A^16: [1, 16, 56, 0, -84, -784, -18656, -384896, ...]; A^25: [1, 25, 200, 525, 0, -2695, -38600, -878150, ...]; A^36: [1, 36, 486, 3000, 7821, 0, -101322, -1916352, ...]; A^49: [1, 49, 980, 10241, 58898, 170079, 0, -4515000, ...]; A^64: [1, 64, 1760, 27136, 256048, 1500352, 4979712, 0, ...]; A^81: [1, 81, 2916, 61425, 838026, 7720839, 48097152, 184870512, 0,...]; ... Note how the coefficient of x^n in A(x)^((n+1)^2) = 0 for n>1. ALTERNATE RELATION. The coefficients in A(x)^(n^2) * (1 - n*x*A(x)'/A(x)) begin: n=1: [1, 0, 4, -50, 582, -6412, 76320, -733896, 13283970, ...]; n=2: [1, 2, 0, -28, 427, -5040, 67092, -547200, 15539502, ...]; n=3: [1, 6, 0, 0, 84, -1134, 25992, 3960, 13172355, ...]; n=4: [1, 12, 28, 0, 0, 196, 9328, 288672, 13426530, ...]; n=5: [1, 20, 120, 210, 0, 0, 7720, 351260, 15775425, ...]; n=6: [1, 30, 324, 1500, 2607, 0, 0, 319392, 17452530, ...]; n=7: [1, 42, 700, 5852, 25242, 48594, 0, 0, 15518020, ...]; n=8: [1, 56, 1320, 16960, 128024, 562632, 1244928, 0, 0, ...]; n=9: [1, 72, 2268, 40950, 465570, 3431484, 16032384, 41082336, 0, 0, ...]; ... in which the two adjacent diagonals above the main diagonal are all zeros after initial terms, illustrating that (1) 0 = [x^(n-1)] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), and (2) 0 = [x^n] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 0.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..200
Programs
-
PARI
{a(n) = local(A=[1,1]); for(m=3,n+1, A=concat(A,0); A[ #A]=-Vec(Ser(A)^(m^2))[m]/m^2); A[n+1]} for(n=0, 20, print1(a(n), ", "))
Formula
The g.f. A(x) satisfies the following relations.
(1) 0 = [x^(n-1)] A(x)^(n^2), for n > 1.
(2) 0 = [x^(n-1)] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 1. - Paul D. Hanna, Oct 22 2020
(3) 0 = [x^n] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 0. - Paul D. Hanna, Oct 22 2020
Comments