A263394 a(n) = Product_{i=1..n} (3^i - 2^i).
1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1
Crossrefs
Programs
-
Magma
[&*[ 3^k-2^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Maple
A263394:=n->mul(3^i-2^i, i=1..n): seq(A263394(n), n=1..15); # Wesley Ivan Hurt, Mar 02 2016
-
Mathematica
Table[Product[3^i - 2^i, {i, n}], {n, 15}] (* Wesley Ivan Hurt, Mar 02 2016 *) FoldList[Times,Table[3^i-2^i,{i,15}]] (* Harvey P. Dale, Feb 06 2017 *)
-
PARI
a(n) = prod(k=1, n, 3^k-2^k); \\ Michel Marcus, Mar 05 2016
Formula
a(n) = Product_{i=1..n} A001047(i).
a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(2/3) = 0.0692720728018644... . - Vaclav Kotesovec, Oct 10 2016
Comments