cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A052446 Number of unlabeled simple connected bridged graphs on n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 52, 351, 3714, 63638, 1912203, 103882478, 10338614868, 1892863194064, 639799762452639, 400857034314325045, 467526363203064793081, 1019286659457016864347582, 4170114225096278323394128049, 32130213534058019378134295287305
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Comments

These are unlabeled connected graphs with spanning edge-connectivity 1, where the spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. - Gus Wiseman, Sep 02 2019

Crossrefs

Cf. other k-edge-connected unlabeled graph sequences A052446, A052447, A052448, A241703, A241704, A241705.
Cf. A001349 (number of simple connected graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
Column k = 1 of A263296.
Row sums of A327077 if the first column is removed.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
The labeled version is A327071.

Programs

Formula

a(n) = A001349(n) - A007146(n).

Extensions

a(8) and a(9) and better description by Eric W. Weisstein, Nov 07 2010
a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
Additional terms from A001349 and A007146 by Eric W. Weisstein, Oct 29 2015
a(18)-a(22) from A001349 and A007146 by Jean-François Alcover, Nov 09 2019

A263915 Number of (not necessarily connected) simple bridged graphs with n nodes.

Original entry on oeis.org

0, 1, 2, 6, 18, 79, 462, 4344, 69130, 1994511, 106159534, 10456891547, 1904341902688, 641869332391172, 401549418479234409, 467956969039256753054, 1019786043659665470506946, 4171198012616858743636651785, 32134630668466555232483869886654
Offset: 1

Views

Author

Eric W. Weisstein, Oct 29 2015

Keywords

Crossrefs

Cf. A000088 (number of simple graphs).
Cf. A007146 (number of simple connected bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graph).

Formula

a(n) = A000088(n) - A263914(n).

Extensions

More terms using formula by Falk Hüffner, Jan 18 2016
Showing 1-3 of 3 results.