A264236
Number of vertices at level n of the hyperbolic Pascal pyramid.
Original entry on oeis.org
1, 3, 6, 13, 36, 138, 736, 4908, 36351, 280228, 2190651, 17206203, 135357481, 1065387963, 8387050686, 66029196613, 519841755036, 4092692363058, 32221664474776, 253680537891828, 1997222414704551, 15724098193422028, 123795561597659331, 974640390569138163
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (6th line of Table 1).
- Index entries for linear recurrences with constant coefficients, signature (12,-37,37,-12,1).
-
LinearRecurrence[{12, -37, 37, -12, 1}, {1, 3, 6, 13, 36}, 30] (* Bruno Berselli, Nov 09 2015 *)
-
Vec((1-9*x+7*x^2+15*x^3+3*x^4)/((1-x)*(1-3*x+x^2)*(1-8*x+x^2)) + O(x^50)) \\ Altug Alkan, Nov 09 2015
A292295
Sum of values of vertices of type A at level n of the hyperbolic Pascal pyramid.
Original entry on oeis.org
0, 0, 6, 18, 54, 174, 582, 1974, 6726, 22950, 78342, 267462, 913158, 3117702, 10644486, 36342534, 124081158, 423639558, 1446395910, 4938304518, 16860426246, 57565095942, 196539531270, 671027933190, 2291032670214, 7822074814470, 26706233917446, 91180786040838
Offset: 0
-
CoefficientList[Series[6*x^2*(1 - 2*x)/((1 - x)*(1 - 4*x + 2*x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
concat(vector(2), Vec(6*x^2*(1 - 2*x) / ((1 - x)*(1 - 4*x + 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017
A292296
Sum of values of vertices of type B at level n of the hyperbolic Pascal pyramid.
Original entry on oeis.org
0, 0, 0, 6, 30, 114, 402, 1386, 4746, 16218, 55386, 189114, 645690, 2204538, 7526778, 25698042, 87738618, 299558394, 1022756346, 3491908602, 11922121722, 40704669690, 138974435322, 474488401914, 1620004737018, 5531042144250, 18884159102970, 64474552123386
Offset: 0
-
CoefficientList[Series[6*x^3/((1 - x)*(1 - 4*x + 2*x^2)), {x, 0, 30}],
x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
concat(vector(3), Vec(6*x^3 / ((1 - x)*(1 - 4*x + 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017
A292297
Sum of values of vertices of type C at level n of the hyperbolic Pascal pyramid.
Original entry on oeis.org
0, 0, 0, 6, 36, 210, 1452, 12138, 114684, 1147002, 11729148, 120902202, 1249686492, 12929303130, 133809210108, 1384977143610, 14335551770268, 148385432561562, 1535924231893308, 15898233466089210, 164561459781232092, 1703363953470584922, 17631399812695032444
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..988
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (3rd line of Table 2).
- Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12).
-
CoefficientList[Series[6*x^3*(1 - 12*x + 26*x^2 - 20*x^3)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
concat(vector(3), Vec(6*x^3*(1 - 12*x + 26*x^2 - 20*x^3) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017
A292298
Sum of values of vertices of type D at level n of the hyperbolic Pascal pyramid.
Original entry on oeis.org
0, 0, 0, 0, 24, 324, 3600, 38148, 398112, 4132596, 42818208, 443356212, 4589665248, 47509091508, 491769434400, 5090291998452, 52689326584800, 545383755284532, 5645229662006688, 58433377222329972, 604839778633231200, 6260653947359090868, 64803587809297981728
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..987
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (4th line of Table 2).
- Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12).
-
I:=[0,0,0,0,24,324,3600]; [n le 7 select I[n] else 18*Self(n-1)-99*Self(n-2)+226*Self(n-3)-224*Self(n-4)+ 92*Self(n-5)-12*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Sep 17 2017
-
Join[{0}, LinearRecurrence[{18, -99, 226, -224, 92, -12}, {0, 0, 0, 24, 324, 3600}, 20] ] (* Vincenzo Librandi, Sep 17 2017 *)
CoefficientList[Series[12*x^4*(2 - 9*x + 12*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
concat(vector(4), Vec(12*x^4*(2 - 9*x + 12*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017
A292299
Sum of values of vertices of type E at level n of the hyperbolic Pascal pyramid.
Original entry on oeis.org
0, 0, 0, 0, 18, 312, 3798, 41544, 438270, 4566120, 47368110, 490668936, 5080145070, 52588590888, 544355820750, 5634640292424, 58323941179182, 603707608725096, 6248936971173390, 64682313170747016, 669522088312069614, 6930176023749038760, 71733763792342350798
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..987
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (5th line of Table 2).
- Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12).
-
CoefficientList[Series[6*x^4*(3 - 2*x - 6*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
concat(vector(4), Vec(6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017
Showing 1-6 of 6 results.