cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A162740 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 4, 12, 30, 72, 168, 390, 900, 2076, 4782, 11016, 25368, 58422, 134532, 309804, 713406, 1642824, 3783048, 8711526, 20060676, 46195260, 106377294, 244963080, 564094968, 1298984214, 2991269124, 6888221772, 15862029150, 36526694472, 84112781928, 193692865350
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
From Bruno Berselli, Dec 28 2015: (Start)
Also, expansion of b(2)*b(3)/(1 - 2*x - 2*x^2 + 3*x^3), where b(k) = (1-x^k)/(1-x).
This is also the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_22 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
(End)

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(3)/(1-2*x-2*x^2+3*x^3))); // Bruno Berselli, Dec 28 2015 - see Chapovalov et al.
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(x^3+2x^2+2x+1)/(3x^3-2x^2-2x+1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
    coxG[{3, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (x^3 + 2*x^2 + 2*x + 1)/(3*x^3 - 2*x^2 - 2*x + 1).
From Bruno Berselli, Dec 28 2015: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) for n>3.
a(n) = -2 + ((-7+2*sqrt(13))*(1-sqrt(13))^n + (7+2*sqrt(13))*(1+sqrt(13))^n)/(3*sqrt(13)*2^(n-1)) for n>0. (End)
G.f.: (1+x)*(1-x^3)/(1 -3*x +5*x^3 -3*x^4). - G. C. Greubel, Apr 25 2019

A264079 Expansion of b(2)*b(6)/(1 - 2*x + x^3 - x^4 - x^5 + 2*x^6), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 10, 21, 41, 79, 150, 282, 527, 982, 1829, 3405, 6337, 11790, 21932, 40797, 75888, 141161, 262573, 488407, 908474, 1689830, 3143211, 5846606, 10875117, 20228513, 37626513, 69988066, 130182920, 242149745, 450416216, 837807065, 1558382345, 2898705007, 5391803070
Offset: 0

Views

Author

Bruno Berselli, Dec 28 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_20 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(6)/(1-2*x+x^3-x^4-x^5+2*x^6)));
  • Mathematica
    CoefficientList[Series[(1 + x)^2 (1 - x + x^2) (1 + x + x^2)/((1 - x) (1 - x - x^2 - x^4 - 2 x^5)), {x, 0, 40}], x]
    LinearRecurrence[{2,0,-1,1,1,-2},{1,4,10,21,41,79,150},40] (* Harvey P. Dale, Jan 18 2021 *)

Formula

G.f.: (1 + x)^2*(1 - x + x^2)*(1 + x + x^2)/((1 - x)*(1 - x - x^2 - x^4 - 2*x^5)).
a(n) = 2*a(n-1) - a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) for n>6.

A266333 G.f. = b(2)*b(4)*b(6)/(x^8+x^6-x^5-x^3-x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 17, 29, 47, 74, 113, 170, 253, 375, 555, 818, 1203, 1767, 2594, 3807, 5584, 8188, 12004, 17597, 25795, 37809, 55416, 81220, 119038, 174464, 255694, 374742, 549215, 804918, 1179670, 1728895, 2533823, 3713502, 5442406, 7976239, 11689751, 17132167
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_2 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(4)*b(6)/(x^8+x^6-x^5-x^3-x+1))); // Bruno Berselli, Dec 29 2015
    
  • Maple
    gf:= b(2)*b(4)*b(6)/(x^8+x^6-x^5-x^3-x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[4] b[6]/(x^8 + x^6 - x^5 - x^3 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 29 2015 *)
  • PARI
    Vec((1+x)^3*(1-x+x^2)*(1+x^2)*(1+x+x^2) / ((1-x)*(1-x-x^3)*(1+x+x^2+x^3+x^4)) + O(x^50)) \\ Colin Barker, Dec 29 2015

Formula

G.f.: (1+x)^3*(1-x+x^2)*(1+x^2)*(1+x+x^2) / ((1-x)*(1-x-x^3)*(1+x+x^2+x^3+x^4)). - Colin Barker, Dec 29 2015

A266334 G.f. = b(2)*b(6)*b(10)/(x^14+x^12-x^5-x^3-x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 17, 30, 51, 84, 135, 215, 341, 538, 846, 1328, 2082, 3262, 5108, 7997, 12519, 19595, 30668, 47996, 75112, 117546, 183950, 287864, 450478, 704950, 1103170, 1726339, 2701526, 4227582, 6615684, 10352789, 16200930, 25352598, 39673907, 62085111, 97156070
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_3 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(6)*b(10)/(x^14+x^12-x^5-x^3-x+1))); // Bruno Berselli, Dec 29 2015
  • Maple
    gf:= b(2)*b(6)*b(10)/(x^14+x^12-x^5-x^3-x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[6] b[10]/(x^14 + x^12 - x^5 - x^3 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 29 2015 *)

A266335 G.f. = b(2)^2*b(6)/(x^7+x^6-x^5-x^2-x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 17, 30, 52, 88, 145, 237, 386, 628, 1020, 1653, 2677, 4334, 7016, 11356, 18377, 29737, 48118, 77860, 125984, 203849, 329837, 533690, 863532, 1397228, 2260765, 3657997, 5918766, 9576768, 15495540, 25072313, 40567857, 65640174, 106208036, 171848216
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_4 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)^2*b(6)/(x^7+x^6-x^5-x^2-x+1))); // Bruno Berselli, Dec 29 2015
  • Maple
    gf:= b(2)^2*b(6)/(x^7+x^6-x^5-x^2-x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2]^2 b[6]/(x^7 + x^6 - x^5 - x^2 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 29 2015 *)
    LinearRecurrence[{1,1,0,0,1,-1,-1},{1,4,9,17,30,52,88,145},40] (* Harvey P. Dale, Mar 23 2020 *)

A266336 G.f. = b(2)*b(6)/(x^6-x^4+x^2-2*x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 16, 26, 42, 67, 104, 158, 238, 359, 542, 816, 1224, 1833, 2746, 4116, 6168, 9237, 13828, 20702, 30998, 46415, 69492, 104034, 155746, 233171, 349090, 522628, 782420, 1171349, 1753622, 2625352, 3930412, 5884193, 8809176, 13188162, 19743938, 29558555
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_5 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(6)/(x^6-x^4+x^2-2*x+1))); // Bruno Berselli, Dec 29 2015
  • Maple
    gf:= b(2)*b(6)/(x^6-x^4+x^2-2*x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[6]/(x^6 - x^4 + x^2 - 2 x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 29 2015 *)

A266337 Expansion of b(3)*b(4)/(1 - 2*x + x^5), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 11, 25, 52, 104, 204, 397, 769, 1486, 2868, 5532, 10667, 20565, 39644, 76420, 147308, 283949, 547333, 1055022, 2033624, 3919940, 7555931, 14564529, 28074036, 54114448, 104308956, 201061981, 387559433, 747044830, 1439975212, 2775641468
Offset: 0

Views

Author

Bruno Berselli, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_21 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(3)*b(4)/(1-2*x+x^5)));
  • Mathematica
    CoefficientList[Series[(1 + x) (1 + x^2) (1 + x + x^2)/((1 - x) (1 - x - x^2 - x^3 - x^4)), {x, 0, 40}], x]

Formula

G.f.: (1 + x)*(1 + x^2)*(1 + x + x^2)/((1 - x)*(1 - x - x^2 - x^3 - x^4)).
a(n) = 2*a(n-1) - a(n-5) for n>5.

A266338 G.f. = b(2)*b(4)*b(6)/(x^8-x^3-x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 17, 29, 46, 70, 104, 152, 219, 314, 449, 639, 907, 1286, 1821, 2576, 3643, 5150, 7277, 10281, 14524, 20515, 28975, 40923, 57795, 81620, 115266, 162780, 229876, 324627, 458432, 647385, 914217, 1291029, 1823148, 2574585, 3635738, 5134259, 7250412
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_6 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Maple
    gf:= b(2)*b(4)*b(6)/(x^8-x^3-x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[4] b[6]/(x^8 - x^3 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)

A266339 G.f. = b(2)^2*b(4)/(x^5+x^4-x^3-x^2-x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 18, 33, 56, 94, 156, 255, 416, 677, 1098, 1780, 2884, 4669, 7558, 12233, 19796, 32034, 51836, 83875, 135716, 219597, 355318, 574920, 930244, 1505169, 2435418, 3940593, 6376016, 10316614, 16692636, 27009255, 43701896, 70711157, 114413058, 185124220
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_7 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Maple
    gf:= b(2)^2*b(4)/(x^5+x^4-x^3-x^2-x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2]^2 b[4]/(x^5 + x^4 - x^3 - x^2 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)

A266340 G.f. = b(2)*b(4)*b(6)/(x^8+x^6-x^5+x^4-2*x^3-x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 9, 18, 33, 56, 93, 151, 241, 383, 606, 956, 1506, 2369, 3724, 5852, 9193, 14439, 22676, 35609, 55916, 87801, 137865, 216473, 339899, 533696, 837986, 1315766, 2065951, 3243852, 5093330, 7997283, 12556917, 19716214, 30957365, 48607628, 76321141, 119835439
Offset: 0

Views

Author

Alois P. Heinz, Dec 27 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_8 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Maple
    gf:= b(2)*b(4)*b(6)/(x^8+x^6-x^5+x^4-2*x^3-x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[4] b[6]/(x^8 + x^6 - x^5 + x^4 - 2 x^3 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
Showing 1-10 of 21 results. Next