cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265645 a(n) = n^2 * floor(n/2).

Original entry on oeis.org

0, 0, 4, 9, 32, 50, 108, 147, 256, 324, 500, 605, 864, 1014, 1372, 1575, 2048, 2312, 2916, 3249, 4000, 4410, 5324, 5819, 6912, 7500, 8788, 9477, 10976, 11774, 13500, 14415, 16384, 17424, 19652, 20825, 23328, 24642, 27436, 28899, 32000, 33620, 37044, 38829, 42592, 44550, 48668, 50807, 55296, 57624, 62500
Offset: 0

Views

Author

Ian Stewart, Apr 06 2016

Keywords

Crossrefs

Programs

  • GAP
    List([0..55], n -> n^2*Int(n/2)); # Muniru A Asiru, Apr 05 2018
  • Haskell
    seq' x = x^2 * (x `div` 2)
    map seq' [0..50]
    
  • Magma
    [n^2*Floor(n/2): n in [0..50]]; // Vincenzo Librandi, Apr 04 2018
    
  • Mathematica
    Table[n^2 Floor[n/2], {n, 0, 50}] (* Vincenzo Librandi, Apr 04 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,0,4,9,32,50,108},60] (* Harvey P. Dale, May 19 2019 *)
  • PARI
    a(n) = n^2*(n\2); \\ Altug Alkan, Apr 14 2016
    
  • PARI
    concat(vector(2), Vec(x^2*(4+5*x+11*x^2+3*x^3+x^4)/((1-x)^4*(1+x)^3) + O(x^50))) \\ Colin Barker, Apr 14 2016
    

Formula

a(n) = A000290(n)*A004526(n). - Michel Marcus, Apr 14 2016
G.f.: x^2*(4 + 5*x + 11*x^2 + 3*x^3 + x^4)/((1 - x)^4*(1 + x)^3). - Ilya Gutkovskiy, Apr 14 2016; corrected by Colin Barker, Apr 14 2016
From Colin Barker, Apr 14 2016: (Start)
a(n) = n^2*(2*n + (-1)^n - 1)/4.
a(n) = n^3/2 for n even.
a(n) = n^2*(n-1)/2 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>6. (End)
Sum_{n>=2} 1/a(n) = zeta(3)/4 - Pi^2/4 - 2*log(2) + 4. - Amiram Eldar, Mar 15 2024