cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292193 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 5, 1, 1, 9, 14, 14, 7, 1, 1, 17, 36, 46, 25, 11, 1, 1, 33, 98, 164, 107, 56, 15, 1, 1, 65, 276, 610, 505, 352, 97, 22, 1, 1, 129, 794, 2324, 2531, 2474, 789, 198, 30, 1, 1, 257, 2316, 8986, 13225, 18580, 7273, 2314, 354, 42
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,   1,   1, ...
   1,  1,  1,   1,   1, ...
   2,  3,  5,   9,  17, ...
   3,  6, 14,  36,  98, ...
   5, 14, 46, 164, 610, ...
		

Crossrefs

Columns k=0..5 give A000041, A006906, A077335, A265837, A265838, A265839.
Rows 0+1, 2 give A000012, A000051.
Main diagonal gives A292194.
Cf. A292166.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          `if`(i>n, 0, i^k*b(n-i, i, k))+b(n, i-1, k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    m = 12;
    col[k_] := col[k] = Product[1/(1 - j^k*x^j), {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&;
    A[n_, k_] := col[k][[n+1]];
    Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j/d)) * A(n-j,k) for n > 0. - Seiichi Manyama, Nov 02 2017

A265837 Expansion of Product_{k>=1} 1/(1 - k^3*x^k).

Original entry on oeis.org

1, 1, 9, 36, 164, 505, 2474, 7273, 31008, 103644, 379890, 1226802, 4747529, 14553648, 52167558, 171639695, 583371802, 1851395692, 6427705062, 19983302144, 67235043192, 214615427776, 697704303005, 2194982897304, 7262755260410, 22402942281766, 72461661415093
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=3 of A292193.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - k^3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where
c = 86.60286320343345379122228784466307940393110978... if n mod 3 = 0
c = 86.27536745612304663727011387030370600864018892... if n mod 3 = 1
c = 86.29819842537784019895326532818285333403267092... if n mod 3 = 2.
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(3*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A265842 Expansion of Product_{k>=1} (1 + k^5*x^k).

Original entry on oeis.org

1, 1, 32, 275, 1267, 11925, 51445, 406183, 1406614, 14690040, 51144366, 251885088, 1481359033, 5108404955, 42614629915, 158222158038, 588574803125, 2360755022421, 13255325882835, 39266011999104, 325719196861377, 1031732678138822, 3791401325667894
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=5 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(5*k)*x^(j*k)/k). - Ilya Gutkovskiy, Oct 18 2018
Conjecture: log(a(n)) ~ 5*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A265838 Expansion of Product_{k>=1} 1/(1 - k^4*x^k).

Original entry on oeis.org

1, 1, 17, 98, 610, 2531, 18580, 72453, 449494, 2114440, 10753594, 48572844, 272867295, 1137441506, 5834448870, 27276382027, 129389072144, 576677550870, 2884567552542, 12401875640710, 59474089385344, 270438887909580, 1230979340265033, 5477371267093144
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=4 of A292193.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - k^4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(4*n/3), where
c = 27.2472595510480930563087281042486261391960582835336715327... if n mod 3 = 0
c = 26.8841208067599453033952496040472485838861626762931432887... if n mod 3 = 1
c = 26.9277867007233095885556073185206409643421012262073908850... if n mod 3 = 2.
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(4*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Showing 1-4 of 4 results.