cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A292193 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 5, 1, 1, 9, 14, 14, 7, 1, 1, 17, 36, 46, 25, 11, 1, 1, 33, 98, 164, 107, 56, 15, 1, 1, 65, 276, 610, 505, 352, 97, 22, 1, 1, 129, 794, 2324, 2531, 2474, 789, 198, 30, 1, 1, 257, 2316, 8986, 13225, 18580, 7273, 2314, 354, 42
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,   1,   1, ...
   1,  1,  1,   1,   1, ...
   2,  3,  5,   9,  17, ...
   3,  6, 14,  36,  98, ...
   5, 14, 46, 164, 610, ...
		

Crossrefs

Columns k=0..5 give A000041, A006906, A077335, A265837, A265838, A265839.
Rows 0+1, 2 give A000012, A000051.
Main diagonal gives A292194.
Cf. A292166.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          `if`(i>n, 0, i^k*b(n-i, i, k))+b(n, i-1, k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    m = 12;
    col[k_] := col[k] = Product[1/(1 - j^k*x^j), {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&;
    A[n_, k_] := col[k][[n+1]];
    Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j/d)) * A(n-j,k) for n > 0. - Seiichi Manyama, Nov 02 2017

A265840 Expansion of Product_{k>=1} (1 + k^3*x^k).

Original entry on oeis.org

1, 1, 8, 35, 91, 405, 1069, 3799, 8686, 36744, 86310, 235776, 686329, 1605779, 5230579, 13191702, 30608501, 73907925, 206052723, 433747560, 1324608945, 2995740974, 6973434054, 15364943439, 35816669079, 86662644756, 184871083828, 502089539734, 1098571699830
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=3 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^3*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(3*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ 3*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A265838 Expansion of Product_{k>=1} 1/(1 - k^4*x^k).

Original entry on oeis.org

1, 1, 17, 98, 610, 2531, 18580, 72453, 449494, 2114440, 10753594, 48572844, 272867295, 1137441506, 5834448870, 27276382027, 129389072144, 576677550870, 2884567552542, 12401875640710, 59474089385344, 270438887909580, 1230979340265033, 5477371267093144
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=4 of A292193.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - k^4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(4*n/3), where
c = 27.2472595510480930563087281042486261391960582835336715327... if n mod 3 = 0
c = 26.8841208067599453033952496040472485838861626762931432887... if n mod 3 = 1
c = 26.9277867007233095885556073185206409643421012262073908850... if n mod 3 = 2.
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(4*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A265839 Expansion of Product_{k>=1} 1/(1 - k^5*x^k).

Original entry on oeis.org

1, 1, 33, 276, 2324, 13225, 145586, 760057, 6836328, 45996924, 322816122, 2064921330, 16881567137, 96217644312, 708147553326, 4769313137735, 31412238427954, 198869428043476, 1442034056253438, 8596120396405880, 58954590481229064, 387170921610808720
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=5 of A292193.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - k^5*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(5*n/3), where
c = 12.8519823810391431573687005461910113782018563173082562291... if n mod 3 = 0
c = 12.4535903496941652158697054030067622653283880393322526099... if n mod 3 = 1
c = 12.5138855694494734654940524026530463555984202132997900068... if n mod 3 = 2.
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(5*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A356561 Expansion of e.g.f. Product_{k>0} 1/(1 - k^3 * x^k)^(1/k^3).

Original entry on oeis.org

1, 1, 4, 18, 204, 1260, 37440, 299880, 11002320, 204860880, 6618628800, 92924647200, 8181137764800, 124123075876800, 7211104918617600, 288085376346768000, 14964000305173920000, 340302035937191328000, 42619767305209750656000
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k^3*x^k)^(1/k^3))))
    
  • PARI
    a308689(n) = sumdiv(n, d, d^(3*n/d-2));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a308689(j)*v[i-j+1]/(i-j)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A308689(k) * a(n-k)/(n-k)!.

A369888 Sum of products of cubes of parts , counted without multiplicity, in all partitions of n.

Original entry on oeis.org

1, 1, 9, 36, 108, 449, 1212, 4499, 10914, 43286, 103296, 306994, 867763, 2165484, 6627800, 16827227, 42203212, 104397436, 282967414, 632194758, 1809241372, 4120266946, 10256452121, 23140530512, 55030272918, 130803096050, 291295024121, 739011803928, 1634625423738
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2024

Keywords

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. So a(4) = 64 + 27 + 8 + 8 + 1 = 108.
		

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(prod(k=1, N, 1+k^3*x^k/(1-x^k)))

Formula

G.f.: Product_{k>=1} 1 + k^3*x^k/(1-x^k).
Showing 1-6 of 6 results.