cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A266531 Square array read by antidiagonals upwards: T(n,k) = n-th number with k odd divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 6, 18, 15, 16, 7, 25, 21, 81, 32, 10, 36, 27, 162, 45, 64, 11, 49, 30, 324, 63, 729, 128, 12, 50, 33, 625, 75, 1458, 105, 256, 13, 72, 35, 648, 90, 2916, 135, 225, 512, 14, 98, 39, 1250, 99, 5832, 165, 441, 405, 1024, 17, 100, 42, 1296, 117, 11664, 189, 450, 567, 59049, 2048, 19, 121, 51, 2401, 126, 15625
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2016

Keywords

Comments

T(n,k) is the n-th positive integer with exactly k odd divisors.
This is a permutation of the natural numbers.
T(n,k) is also the n-th number j with the property that the symmetric representation of sigma(j) has k subparts (cf. A279387). - Omar E. Pol, Dec 27 2016
T(n,k) is also the n-th positive integer with exactly k partitions into consecutive parts. - Omar E. Pol, Aug 16 2018

Examples

			The corner of the square array begins:
    1,  3,  9, 15,   81,  45,   729, 105,  225,  405, ...
    2,  5, 18, 21,  162,  63,  1458, 135,  441,  567, ...
    4,  6, 25, 27,  324,  75,  2916, 165,  450,  810, ...
    8,  7, 36, 30,  625,  90,  5832, 189,  882,  891, ...
   16, 10, 49, 33,  648,  99, 11664, 195,  900, 1053, ...
   32, 11, 50, 35, 1250, 117, 15625, 210, 1089, 1134, ...
   64, 12, 72, 39, 1296, 126, 23328, 231, 1225, 1377, ...
  128, 13, 98, 42, 2401, 147, 31250, 255, 1521, 1539, ...
  ...
		

Crossrefs

A230577 Positive integers that have exactly 6 odd divisors.

Original entry on oeis.org

45, 63, 75, 90, 99, 117, 126, 147, 150, 153, 171, 175, 180, 198, 207, 234, 243, 245, 252, 261, 275, 279, 294, 300, 306, 325, 333, 342, 350, 360, 363, 369, 387, 396, 414, 423, 425, 468, 475, 477, 486, 490
Offset: 1

Views

Author

Philippe Beaudoin, Oct 23 2013

Keywords

Comments

Numbers that can be formed in exactly 5 ways by summing sequences of 2 or more consecutive integers.
Column 6 of A266531. - Omar E. Pol, Apr 03 2016
Numbers n such that the symmetric representation of sigma(n) has 6 subparts. - Omar E. Pol, Dec 28 2016

Crossrefs

Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, this sequence, A267697, A267891, A267892, A267893.

Programs

A267696 Numbers with 5 odd divisors.

Original entry on oeis.org

81, 162, 324, 625, 648, 1250, 1296, 2401, 2500, 2592, 4802, 5000, 5184, 9604, 10000, 10368, 14641, 19208, 20000, 20736, 28561, 29282, 38416, 40000, 41472, 57122, 58564, 76832, 80000, 82944, 83521, 114244, 117128, 130321, 153664, 160000, 165888, 167042, 228488, 234256, 260642, 279841
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly five odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 5 subparts. - Omar E. Pol, Dec 28 2016
Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 4 ways; e.g., 81 = 40+41 = 26+27+28 = 11+12+13+14+15+16 = 5+6+7+8+9+10+11+12+13. - Julie Jones, Aug 13 2018

Crossrefs

Column 5 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, this sequence, A230577, A267697, A267891, A267892, A267893.

Programs

  • GAP
    A:=List([1..700000],n->DivisorsInt(n));;
    B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;
    a:=Filtered([1..Length(B)],i->Length(B[i])=5); # Muniru A Asiru, Aug 14 2018
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 5; \\ Michel Marcus, Apr 03 2016
    

Formula

A001227(a(n)) = 5.
Sum_{n>=1} 1/a(n) = 2 * P(4) - 1/8 = 0.00289017370127..., where P(4) is the value of the prime zeta function at 4 (A085964). - Amiram Eldar, Sep 16 2024

Extensions

More terms from Michel Marcus, Apr 03 2016

A267891 Numbers with 8 odd divisors.

Original entry on oeis.org

105, 135, 165, 189, 195, 210, 231, 255, 270, 273, 285, 297, 330, 345, 351, 357, 375, 378, 385, 390, 399, 420, 429, 435, 455, 459, 462, 465, 483, 510, 513, 540, 546, 555, 561, 570, 594, 595, 609, 615, 621, 627, 645, 651, 660, 663, 665, 690, 702, 705, 714, 715, 741, 750, 756, 759, 770, 777, 780, 783, 795, 798, 805, 837
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly eight odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 8 subparts. - Omar E. Pol, Dec 29 2016
Numbers n such that A000265(n) has prime signature {7} or {3,1} or {1,1,1}, i.e., is in A092759 or A065036 or A007304. - Robert Israel, Mar 15 2018
Numbers that can be formed in exactly 7 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 8 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, this sequence, A267892, A267893.

Programs

  • Magma
    [n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // Bruno Berselli, Apr 04 2016
  • Maple
    filter:= proc(n) local r;
      r:= n/2^padic:-ordp(n,2);
      numtheory:-tau(r)=8
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 15 2018
  • Mathematica
    Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* Michael De Vlieger, Dec 30 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after Michel Marcus
    

Formula

A001227(a(n)) = 8.

A267892 Numbers with 9 odd divisors.

Original entry on oeis.org

225, 441, 450, 882, 900, 1089, 1225, 1521, 1764, 1800, 2178, 2450, 2601, 3025, 3042, 3249, 3528, 3600, 4225, 4356, 4761, 4900, 5202, 5929, 6050, 6084, 6498, 6561, 7056, 7200, 7225, 7569, 8281, 8450, 8649, 8712, 9025, 9522, 9800, 10404, 11858, 12100, 12168, 12321, 12996, 13122, 13225, 14112, 14161, 14400, 14450, 15129
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly nine odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 9 subparts. - Omar E. Pol, Dec 29 2016
From Robert Israel, Dec 29 2016: (Start)
Numbers k such that A000265(k) is in A030627.
Numbers of the form 2^j*p^8 or 2^j*p^2*q^2 where p and q are distinct odd primes. (End)
Numbers that can be formed in exactly 8 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 9 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, this sequence, A267893.

Programs

  • GAP
    A:=List([1..16000],n->DivisorsInt(n));; B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;
    a:=Filtered([1..Length(B)],i->Length(B[i])=9); # Muniru A Asiru, Aug 14 2018
  • Maple
    N:= 10^5: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N)/2),2)]);
    Aodd:= select(`<=`,map(t -> t^8, P) union {seq(seq(P[i]^2*P[j]^2,i=1..j-1),j=1..nops(P))}, N):
    A:= map(t -> seq(2^j*t,j=0..ilog2(N/t)), Aodd):
    sort(convert(A,list)); # Robert Israel, Dec 29 2016
  • Mathematica
    Select[Range[5^6], Length[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] == 9 &] (* Michael De Vlieger, Apr 04 2016 *)
    Select[Range[16000],Total[Boole[OddQ[Divisors[#]]]]==9&] (* Harvey P. Dale, May 12 2019 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 9; \\ after Michel Marcus.
    

Formula

A001227(a(n)) = 9.
Sum_{n>=1} 1/a(n) = (P(2)-1/4)^2 - P(4) + 2*P(8) + 7/128 = 0.026721189882055998428..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 16 2024

A267893 Numbers with 10 odd divisors.

Original entry on oeis.org

405, 567, 810, 891, 1053, 1134, 1377, 1539, 1620, 1782, 1863, 1875, 2106, 2268, 2349, 2511, 2754, 2997, 3078, 3240, 3321, 3483, 3564, 3726, 3750, 3807, 4212, 4293, 4375, 4536, 4698, 4779, 4941, 5022, 5427, 5508, 5751, 5913, 5994, 6156, 6399, 6480, 6642, 6723, 6875, 6966, 7128, 7203, 7209, 7452, 7500, 7614, 7857, 8125
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly 10 odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 10 subparts. - Omar E. Pol, Dec 29 2016
Numbers that can be formed in exactly 9 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 10 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, A267892, this sequence.

Programs

  • GAP
    A:=List([1..10000],n->DivisorsInt(n));; B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;
    a:=Filtered([1..Length(B)],i->Length(B[i])=10); # Muniru A Asiru, Aug 14 2018
  • Mathematica
    Select[Range@ 8125, Length@ Select[Divisors@ #, OddQ] == 10 &] (* Michael De Vlieger, Dec 30 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 10; \\ after Michel Marcus
    

Formula

A001227(a(n)) = 10.

A267895 Numbers whose number of odd divisors is prime.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 56, 58, 59, 61, 62, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 104, 106, 107, 109
Offset: 1

Views

Author

Omar E. Pol, Apr 04 2016

Keywords

Comments

All odd primes are in the sequence.

Examples

			The divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36. The odd divisors of 36 are 1, 3, 9. There are 3 odd divisors of 36 and 3 is prime, so 36 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], PrimeQ[DivisorSigma[0, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Dec 03 2020 *)
  • PARI
    isok(n) = isprime(sumdiv(n, d, (d%2))); \\ Michel Marcus, Apr 04 2016
Showing 1-7 of 7 results.