A076515
Numbers k such that 1 + 3^k + 5^k is prime.
Original entry on oeis.org
0, 12, 36, 48, 72, 120, 605376
Offset: 1
-
[n: n in [0..1000]|IsPrime(3^n+5^n+1)] // Vincenzo Librandi, Jan 22 2011
-
A076515:=n->`if`(isprime(1+3^n+5^n), n, NULL): seq(A076515(n), n=0..200); # Wesley Ivan Hurt, Aug 06 2017
-
Do[ If[ PrimeQ[1 + 3^n + 5^n], Print[n]], {n, 0, 3500, 2}]
Select[Range[0,5000],PrimeQ[1+3^#+5^#]&] (* Harvey P. Dale, Mar 09 2012 *)
-
lista(nn) = for(n=0, nn, if(ispseudoprime(1 + 3^n + 5^n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016
A268067
Numbers k such that 1 + 2^k + 3^k + 5^k is prime.
Original entry on oeis.org
1, 17, 1295, 63445
Offset: 1
-
Select[Range[0, 2000], PrimeQ[1 + 2^# + 3^# + 5^#] &]
-
lista(nn) = for(n=0, nn, if(ispseudoprime(1 + 2^n + 3^n + 5^n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016
A261722
Values of m such that 2^m + 3^m + 5^m + 7^m + 11^m + 13^m is a prime number.
Original entry on oeis.org
1 is a term because 2^1 + 3^1 + 5^1 + 7^1 + 11^1 + 13^1 = 41 and 41 is a prime number.
-
[n: n in [0..1000] | IsPrime(a) where a is 2^n+3^n+5^n+ 7^n+11^n+13^n]; // Vincenzo Librandi, Aug 30 2015
-
Select[Table[{n, Sum[Prime[k]^n, {k, 6}]}, {n, 1000}], PrimeQ[#[[2]]]&] [[All, 1]] (* Michael De Vlieger, Aug 29 2015 *)
-
for(n=1, 1e3, if(isprime(13^n+11^n+7^n+5^n+3^n+2^n), print1(n", ")))
A270817
Integers k such that (2^k - 1) + (3^k - 1) + (5^k - 1) is prime.
Original entry on oeis.org
1, 3, 4, 9, 11, 69, 117, 449, 675, 1119, 1959, 2687, 2859, 8001, 8175, 24269, 110247
Offset: 1
4 is a term because (2^4 - 1) + (3^4 - 1) + (5^4 - 1) = 719 is a prime number.
-
Select[Range@ 3000, PrimeQ[(2^# - 1) + (3^# - 1) + (5^# - 1)] &] (* Michael De Vlieger, Mar 23 2016 *)
-
lista(nn) = for(n=1, nn, if(ispseudoprime(-3 + 2^n + 3^n + 5^n), print1(n, ", ")));
-
from sympy import isprime
def afind(limit, startk=1):
pow2, pow3, pow5 = 2**startk, 3**startk, 5**startk
for k in range(startk, limit+1):
if isprime(pow2 + pow3 + pow5 - 3): print(k, end=", ")
pow2 *= 2; pow3 *= 3; pow5 *= 5
afind(1200) # Michael S. Branicky, Sep 08 2021
Showing 1-4 of 4 results.
Comments