cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A034602 Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).

Original entry on oeis.org

1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3

Views

Author

Keywords

Comments

Equivalently, (binomial(2p,p)-2)/(2*p^3) where p runs through the primes >=5.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=2, j=1 and n>=3. - Alexander R. Povolotsky, Apr 18 2013

Examples

			Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Cf. A177783 (alternative definition of Wolstenholme quotient), A072984, A092101, A092103, A092193, A128673, A217772, A223886, A263882.

Programs

  • Magma
    [(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
  • Maple
    f:= proc(n) local p;
    p:= ithprime(n);
    (binomial(2*p-1,p)-1)/p^3
    end proc:
    map(f, [$3..30]); # Robert Israel, Dec 19 2018
  • Mathematica
    Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)

Formula

a(n) = (A088218(p)-1)/p^3 = (A001700(p-1)-1)/p^3 = (A000984(p)-2)/(2*p^3), where p=A000040(n).
a(n) = A087754(n)/2.
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j)) / (k*prime(n)^3) for k=2, j=1, and n>=3. - Alexander R. Povolotsky, Apr 18 2013
a(n) = A263882(n)/prime(n) for n > 2. - Jonathan Sondow, Nov 23 2015
a(n) = numerator(tanh(Sum_{k=1..p-1} artanh(k/p)))/p^3, where p = prime(n) for n >= 3. - Thomas Ordowski, Apr 17 2025

Extensions

Edited by Max Alekseyev, May 14 2010
More terms from Vincenzo Librandi, Nov 23 2015

A357509 a(n) = 2*binomial(3*n,n) - 9*binomial(2*n,n).

Original entry on oeis.org

-7, -12, -24, -12, 360, 3738, 28812, 201672, 1355112, 8936070, 58427226, 380724552, 2479017996, 16151245488, 105359408760, 688338793488, 4504288103784, 29521135717470, 193771020939510, 1273649831269200, 8382448392851610, 55234026483856110, 364347399072847320
Offset: 0

Views

Author

Peter Bala, Oct 01 2022

Keywords

Comments

For integers j and k, not necessarily positive, define u(n) = k^2*(k - 1)*binomial(j*n,n) - j^2*(j - 1)*binomial(k*n,n). We conjecture that u(p) == u(1) (mod p^5) for all primes p >= 7. This is essentially the case (j, k) = (3, 2). [Follows from Helou and Terjanian (2008), Section 3, Proposition 2.]
Conjecture: for r >= 2, u(p^r) == u(p^(r-1)) ( mod p^(3*r+3) ) for all primes p >= 5. - Peter Bala, Oct 13 2022

Crossrefs

Programs

  • Maple
    seq(2*binomial(3*n,n) - 9*binomial(2*n,n), n = 0..20);

Formula

a(n) = 2*A005809(n) - 9*A000984(n).
a(p) == a(1) (mod p^4) for all primes p >= 5 by Meštrović, Section 3, equation 15.
Conjecture: the stronger supercongruence a(p) == a(1) (mod p^5) holds for all primes p >= 7.
The conjecture is true: apply Helou and Terjanian, Section 3, Proposition 2. - Peter Bala, Oct 22 2022
The conjecture was proved by Aidagulov and Alekseyev; see the remarks following Corollary 2. - Peter Bala, Oct 29 2022

A268590 a(n) = (3*C(4p,p) - 20*C(3p,p) + 54*C(2p,p) - 60) / p^7, where p = prime(n).

Original entry on oeis.org

984, 27780, 32144568, 1269360060, 2470299005220, 316528131552725460, 17262503097511844124, 3329177348896984023277536, 12461979236231507288981559840, 783882118494853605112684502280, 3251723952081272231067929776337100, 959689034437453143807696476144553320100
Offset: 5

Views

Author

Max Alekseyev, Feb 07 2016

Keywords

Comments

a(n) is an integer for all n>=5, see A268512.

Crossrefs

Programs

  • PARI
    { A268590(n) = my(p=prime(n)); (-60 + 54*binomial(2*p,p) - 20*binomial(3*p,p) + 3*binomial(4*p,p))/p^7; }

A087754 a(n) = (C(2p,p)-2) / p^3, where p = prime(n).

Original entry on oeis.org

2, 10, 530, 4734, 474986, 5153122, 676701794, 1232820800342, 15623119507746, 34472401720246110, 6163354867874693078, 83483882991733501114, 15658391111267929558466, 42132263940113324754864134
Offset: 3

Views

Author

Henry Bottomley, Oct 02 2003

Keywords

Examples

			a(6)=4734 since 13 is the sixth prime and (C(26,13)-2)/13^3 = (10400600-2)/2197 = 4734.
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[2p,p]-2)/p^3,{p,Prime[Range[3,20]]}] (* Harvey P. Dale, Oct 23 2017 *)

Formula

a(n) = A060842(n) / A000040(n).
a(n) = 2 * A034602(n).

A268512 Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).

Original entry on oeis.org

1, 2, 1, 12, 9, 2, 60, 54, 20, 3, 840, 840, 400, 105, 12, 2520, 2700, 1500, 525, 108, 10, 27720, 31185, 19250, 8085, 2268, 385, 30, 360360, 420420, 280280, 133770, 45864, 10780, 1560, 105, 720720, 864864, 611520, 321048, 127008, 36960, 7488, 945, 56, 12252240, 15036840, 11138400, 6297480, 2776032, 942480
Offset: 1

Views

Author

Max Alekseyev, Feb 06 2016

Keywords

Examples

			n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
		

Crossrefs

Cf. A099996 (first column), A068550 (diagonal), A087754, A268589, A268590, A254593.

Programs

  • Mathematica
    a3418[n_] := LCM @@ Range[n];
    c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
    Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
  • PARI
    { A268512(n,i) = lcm(vector(2*(n-1),i,i)) * binomial(2*n-1,n-i) * (2*i-1) / i / binomial(2*n-1,n) }

Formula

c(n,i) = A003418(2*(n-1))*binomial(2*n-1,n-i)*(2*i-1)/i/binomial(2*n-1,n).
Showing 1-5 of 5 results.