A034602
Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).
Original entry on oeis.org
1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3
Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
- R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.
- Robert Israel, Table of n, a(n) for n = 3..263
- R. R. Aidagulov and M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0 arXiv:1602.02632
- R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica 71:4 (1995), 381-389.
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Jonathan Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
-
[(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
-
f:= proc(n) local p;
p:= ithprime(n);
(binomial(2*p-1,p)-1)/p^3
end proc:
map(f, [$3..30]); # Robert Israel, Dec 19 2018
-
Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)
A357509
a(n) = 2*binomial(3*n,n) - 9*binomial(2*n,n).
Original entry on oeis.org
-7, -12, -24, -12, 360, 3738, 28812, 201672, 1355112, 8936070, 58427226, 380724552, 2479017996, 16151245488, 105359408760, 688338793488, 4504288103784, 29521135717470, 193771020939510, 1273649831269200, 8382448392851610, 55234026483856110, 364347399072847320
Offset: 0
- R. R. Aidagulov and M. A. Alekseyev, On p-adic approximation of sums of binomial coefficients, Journal of Mathematical Sciences 233:5 (2018), 626-634; arXiv:1602.02632 [math.NT], 2018.
- C. Helou and G. Terjanian, On Wolstenholme’s theorem and its converse, J. Number Theory 128 (2008), 475-499.
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.
A268590
a(n) = (3*C(4p,p) - 20*C(3p,p) + 54*C(2p,p) - 60) / p^7, where p = prime(n).
Original entry on oeis.org
984, 27780, 32144568, 1269360060, 2470299005220, 316528131552725460, 17262503097511844124, 3329177348896984023277536, 12461979236231507288981559840, 783882118494853605112684502280, 3251723952081272231067929776337100, 959689034437453143807696476144553320100
Offset: 5
- R. R. Aidagulov and M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0; arXiv preprint, arXiv:1602.02632 [math.NT], 2016-2018.
-
{ A268590(n) = my(p=prime(n)); (-60 + 54*binomial(2*p,p) - 20*binomial(3*p,p) + 3*binomial(4*p,p))/p^7; }
A087754
a(n) = (C(2p,p)-2) / p^3, where p = prime(n).
Original entry on oeis.org
2, 10, 530, 4734, 474986, 5153122, 676701794, 1232820800342, 15623119507746, 34472401720246110, 6163354867874693078, 83483882991733501114, 15658391111267929558466, 42132263940113324754864134
Offset: 3
a(6)=4734 since 13 is the sixth prime and (C(26,13)-2)/13^3 = (10400600-2)/2197 = 4734.
-
Table[(Binomial[2p,p]-2)/p^3,{p,Prime[Range[3,20]]}] (* Harvey P. Dale, Oct 23 2017 *)
A268512
Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).
Original entry on oeis.org
1, 2, 1, 12, 9, 2, 60, 54, 20, 3, 840, 840, 400, 105, 12, 2520, 2700, 1500, 525, 108, 10, 27720, 31185, 19250, 8085, 2268, 385, 30, 360360, 420420, 280280, 133770, 45864, 10780, 1560, 105, 720720, 864864, 611520, 321048, 127008, 36960, 7488, 945, 56, 12252240, 15036840, 11138400, 6297480, 2776032, 942480
Offset: 1
n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
- R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0; also arXiv, arXiv:1602.02632 [math.NT], 2016-2018.
-
a3418[n_] := LCM @@ Range[n];
c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
-
{ A268512(n,i) = lcm(vector(2*(n-1),i,i)) * binomial(2*n-1,n-i) * (2*i-1) / i / binomial(2*n-1,n) }
Showing 1-5 of 5 results.
Comments