A281256
Runs of consecutive integers in A270877, which is produced by a decaying trapezoidal modification of the sieve of Eratosthenes.
Original entry on oeis.org
8, 13, 1, 19, 16, 4, 32, 64, 22, 49, 34, 166, 27, 71, 38, 44, 172, 59, 302, 1984, 46771, 56, 178, 94, 346, 4925, 59492, 188357, 68, 205, 352, 617, 7408, 113492, 371918, 881212, 80, 211, 382, 939, 9110, 114602, 964583, 6671161, 24365591, 89, 214, 581, 1011, 11090, 207938, 1008362
Offset: 1
4, 5 and 6 occur in A270877, but 3 and 7 do not. This is the first run of exactly 3 consecutive integers in A270877, so T(1,3) = 4.
Square table T(n,m) begins:
8, 1, 4, 49, 38, 46771, 188357, 881212, ...
13, 16, 22, 71, 1984, 59492, 371918, 6671161, ...
19, 64, 27, 302, 4925, 113492, 964583, 8799769, ...
32, 166, 59, 346, 7408, 114602, 1008362, 13579777, ...
34, 172, 94, 617, 9110, 207938, 1094293, 14874616, ...
44, 178, 352, 939, 11090, 291712, 1156214, 15974752, ...
56, 205, 382, 1011, 13007, 323716, 1239046, 20585962, ...
68, 211, 581, 1080, 13216, 429915, 1433918, 20745838, ...
80, 214, 599, 1091, 14710, 442807, 1702694, 24321313, ...
89, 223, 624, 1151, 15052, 457220, 1712927, 25634557, ...
A141419
Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1
As a triangle:
1,
2, 3,
3, 5, 6,
4, 7, 9, 10,
5, 9, 12, 14, 15,
6, 11, 15, 18, 20, 21,
7, 13, 18, 22, 25, 27, 28,
8, 15, 21, 26, 30, 33, 35, 36,
9, 17, 24, 30, 35, 39, 42, 44, 45,
10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
1 2 3 4 5 6 7 8 9 10
3 5 7 9 11 13 15 17 19 21
6 9 12 15 18 21 24 27 30 33
10 14 18 22 26 30 34 38 42 46
15 20 25 30 35 40 45 50 55 60
21 27 33 39 45 51 57 63 69 75
28 35 42 49 56 63 70 77 84 91
36 44 52 60 68 76 84 92 100 108
45 54 63 72 81 90 99 108 117 126
55 65 75 85 95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
- R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
- Carlton Gamer, David W. Roeder, and John J. Watkins, Trapezoidal Numbers, Mathematics Magazine 58:2 (1985), pp. 108-110.
- L. E. Jeffery, Unit-primitive matrices
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
A000027,
A000217,
A000326,
A005449,
A045943,
A059845,
A115067,
A140090,
A140091,
A140672 are rows, columns or diagonals - refer to comments.
-
a141419 n k = k * (2 * n - k + 1) `div` 2
a141419_row n = a141419_tabl !! (n-1)
a141419_tabl = map (scanl1 (+)) a004736_tabl
-- Reinhard Zumkeller, Aug 04 2014
-
a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
-
T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]
A286013
Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the positive integers starting with k, interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 2, 3, 2, 4, 0, 5, 3, 6, 0, 3, 7, 4, 0, 8, 0, 0, 9, 5, 4, 10, 0, 0, 4, 11, 6, 0, 0, 12, 0, 5, 0, 13, 7, 0, 0, 14, 0, 0, 5, 15, 8, 6, 0, 5, 16, 0, 0, 0, 0, 17, 9, 0, 0, 0, 18, 0, 7, 6, 0, 19, 10, 0, 0, 0, 20, 0, 0, 0, 6, 21, 11, 8, 0, 0, 6, 22, 0, 0, 7, 0, 0, 23, 12, 0, 0, 0, 0, 24, 0, 9, 0, 0, 0, 25, 13, 0, 0, 7, 0
Offset: 1
Triangle begins:
1;
2;
3, 2;
4, 0;
5, 3;
6, 0, 3;
7, 4, 0;
8, 0, 0;
9, 5, 4;
10, 0, 0, 4;
11, 6, 0, 0;
12, 0, 5, 0;
13, 7, 0, 0;
14, 0, 0, 5;
15, 8, 6, 0, 5;
16, 0, 0, 0, 0;
17, 9, 0, 0, 0;
18, 0, 7, 6, 0;
19, 10, 0, 0, 0;
20, 0, 0, 0, 6;
21, 11, 8, 0, 0, 6;
22, 0, 0, 7, 0, 0;
23, 12, 0, 0, 0, 0;
24, 0, 9, 0, 0, 0;
25, 13, 0, 0, 7, 0;
26, 0, 0, 8, 0, 0;
27, 14, 10, 0, 0, 7;
28, 0, 0, 0, 0, 0, 7;
...
In accordance with the conjecture, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The largest parts are 15, 8, 6, 5, respectively, so the 15th row of the triangle is [15, 8, 6, 0, 5].
The number of positive terms in row n is
A001227(n), the number of partitions of n into consecutive parts.
The last positive term in row n is in column
A109814(n).
Cf.
A196020,
A204217,
A211343,
A235791,
A237048,
A237591,
A237593,
A245579,
A270877,
A286014,
A286015.
-
With[{n = 7}, DeleteCases[#, m_ /; m < 0] & /@ Transpose@ Table[Apply[Join @@ {ConstantArray[-1, #2 - 1], Array[(k + #/k) Boole[Mod[#, k] == 0] &, #1 - #2 + 1, 0]} &, # (# + 1)/2 & /@ {n, k}], {k, n}]] // Flatten (* Michael De Vlieger, Jul 21 2017 *)
A066680
Badly sieved numbers: as in the Sieve of Eratosthenes multiples of unmarked numbers p are marked, but only up to p^2.
Original entry on oeis.org
2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 23, 27, 29, 30, 31, 37, 41, 43, 45, 47, 50, 53, 59, 61, 63, 67, 70, 71, 73, 75, 79, 80, 83, 89, 97, 98, 101, 103, 105, 107, 109, 112, 113, 125, 127, 128, 131, 137, 139, 147, 149, 151, 154, 157, 163
Offset: 1
For 2, the first unmarked number, there is only one multiple <= 4=2^2:
giving 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
for 3, the next unmarked number, we mark 6=2*3 and 9=3*3
giving 2 3 [4] 5 [6] 7 8 [9] 10 11 12 13 14 15 16 17 18 19 20 ...
for 5, the next unmarked number, we mark 10=2*5, 15=3*5, 20=4*5 and 25=5*5
giving 2 3 [4] 5 [6] 7 8 [9] [10] 11 12 13 14 [15] 16 17 18 19 [20] ... and so on.
Sequences generated by a closely related sieving process:
A000040 (also a subsequence),
A026424,
A270877.
-
a066680 n = a066680_list !! (n-1)
a066680_list = s [2..] where
s (b:bs) = b : s [x | x <- bs, x > b ^ 2 || mod x b > 0]
-- Reinhard Zumkeller, Feb 17 2012
-
A099104[1] = 0; A099104[n_] := A099104[n] = Product[If[n > d^2, 1, 1 - A099104[d]], {d, Select[ Range[n-1], Mod[n, #] == 0 &]}]; Select[ Range[200], A099104[#] == 1 &] (* Jean-François Alcover, Feb 15 2012 *)
max = 200; badPrimes = Range[2, max]; len = max; iter = 1; While[iter <= len, curr = badPrimes[[iter]]; badPrimes = Complement[badPrimes, Range[2, curr]curr]; len = Length[badPrimes]; iter++]; badPrimes (* Alonso del Arte, Feb 21 2012 *)
A136259
Stone skipping numbers.
Original entry on oeis.org
1, 3, 4, 5, 9, 13, 18, 19, 31, 32, 33, 38, 39, 55, 56, 57, 58, 59, 94, 95, 96, 97, 103, 104, 156, 157, 239, 244, 245, 249, 253, 254, 255, 256, 257, 258, 275, 276, 277, 419, 420, 609, 610, 787, 788, 789, 790, 791, 792, 1069, 1070, 1664, 1665, 1666, 1667, 1668, 1669, 1670
Offset: 1
Start with natural numbers
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,...
a(0)=1 set t=1 (jump 1 position to the right, erase 1 position) gives
1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,...
i=3 set t=3 (jump 3 positions to the right, erase 3 positions; from the last erased position jump 2 positions to the right, erase 2 positions; from the last erased position jump 1 position to the right, erase 1 position) gives
1,3,4,5,9,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,...
i=4 set t=4 (jump 4 positions to the right, erase 4 positions; from the last erased position jump 3 positions to the right, erase 3 positions; from the last erased position jump 2 positions to the right, erase 2 positions;from the last erased position jump 1 position to the right, erase 1 position ) gives
1,3,4,5,9,13,18,19,23,27,28,...
i=5 set t=5, repeat procedure.
- L. Bocquet, The physics of stone skipping, Am. J. Phys 71 (2) (2003) 150-155.
- D. X. Charles, Sieve Methods, July 2000, U. of Wisconsin.
- Rémi Eismann, Decomposition into weight * level + jump and application to a new classification of primes, arXiv:0711.0865 [math.NT], 2007-2010.
- M. C. Wunderlich, A general class of sieve generated sequences, Acta Arithmetica XVI, 1969, pp.41-56.
-
nmax := 3000: a136259 := [seq(i,i=1..nmax)] : s := 1: t := op(s,a136259) : p := 1:
while op(-1,a136259)>t do p := p+t ; outb := false; while t >= 1 do for eli from 1 to t do if p > nops(a136259) then outb := true; break; fi; a136259 := subsop(p=NULL,a136259) ; od: if outb then break; fi; t := t-1 ; p := p+t-1 ; od: print(a136259) ; s := s+1 ; p := s ; t := op(s,a136259) : od: # R. J. Mathar, Aug 17 2009
Showing 1-5 of 5 results.
Comments