cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A281256 Runs of consecutive integers in A270877, which is produced by a decaying trapezoidal modification of the sieve of Eratosthenes.

Original entry on oeis.org

8, 13, 1, 19, 16, 4, 32, 64, 22, 49, 34, 166, 27, 71, 38, 44, 172, 59, 302, 1984, 46771, 56, 178, 94, 346, 4925, 59492, 188357, 68, 205, 352, 617, 7408, 113492, 371918, 881212, 80, 211, 382, 939, 9110, 114602, 964583, 6671161, 24365591, 89, 214, 581, 1011, 11090, 207938, 1008362
Offset: 1

Views

Author

Peter Munn, Jan 18 2017

Keywords

Comments

Square table T, read by ascending antidiagonals, where T(n,m) gives the least integer in the n-th occurrence of a run of exactly m consecutive integers in the ordered sequence A270877.
A270877 is sifted from the positive integers by modifying the sieve of Eratosthenes: instead of eliminating integers that would enumerate a rectangular area dot pattern with one side held at a constant length (equal to each surviving integer in turn), the sieve eliminates those enumerating a trapezoidal area dot pattern with the constant length being the trapezoid's longest side. Given this geometric relationship, it is considered worth looking for qualities that A270877 may have in common with the sequence of primes, potentially influenced by related causes such as the effect of prime factors on A270877.
The columns of this sequence, listing the runs of m consecutive integers within A270877, merit comparative examination with equivalent sequences for prime k-tuples. For m=5, the notably larger ratio between T(1,5) and T(2,5) resembles early large ratio gaps in the occurrence sequences of k-tuples such as A022008 (sextuples), whereas columns m<5 are more comparable with those for shorter k-tuples such as A001359 (twin primes) and A007530 (quadruples), each having a relatively low-valued first term (less than 60) and without such a large ratio gap. In comparison, the columns for runs m>5 appear more like the sequences for some longer k-tuples such as A027570 (a 10-tuple sequence). Row 1 merits comparative examination with A186702 for primes.
The author conjectures that T(n,m) exists for all n>=1, m>=1.

Examples

			4, 5 and 6 occur in A270877, but 3 and 7 do not. This is the first run of exactly 3 consecutive integers in A270877, so T(1,3) = 4.
Square table T(n,m) begins:
   8,   1,   4,   49,    38,  46771,  188357,   881212, ...
  13,  16,  22,   71,  1984,  59492,  371918,  6671161, ...
  19,  64,  27,  302,  4925, 113492,  964583,  8799769, ...
  32, 166,  59,  346,  7408, 114602, 1008362, 13579777, ...
  34, 172,  94,  617,  9110, 207938, 1094293, 14874616, ...
  44, 178, 352,  939, 11090, 291712, 1156214, 15974752, ...
  56, 205, 382, 1011, 13007, 323716, 1239046, 20585962, ...
  68, 211, 581, 1080, 13216, 429915, 1433918, 20745838, ...
  80, 214, 599, 1091, 14710, 442807, 1702694, 24321313, ...
  89, 223, 624, 1151, 15052, 457220, 1712927, 25634557, ...
		

Crossrefs

This is an analysis of A270877.

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A286013 Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the positive integers starting with k, interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 2, 3, 2, 4, 0, 5, 3, 6, 0, 3, 7, 4, 0, 8, 0, 0, 9, 5, 4, 10, 0, 0, 4, 11, 6, 0, 0, 12, 0, 5, 0, 13, 7, 0, 0, 14, 0, 0, 5, 15, 8, 6, 0, 5, 16, 0, 0, 0, 0, 17, 9, 0, 0, 0, 18, 0, 7, 6, 0, 19, 10, 0, 0, 0, 20, 0, 0, 0, 6, 21, 11, 8, 0, 0, 6, 22, 0, 0, 7, 0, 0, 23, 12, 0, 0, 0, 0, 24, 0, 9, 0, 0, 0, 25, 13, 0, 0, 7, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2017

Keywords

Comments

Conjecture 1: T(n,k) is the largest part of the partition of n into k consecutive parts, if T(n,k) > 0.
Conjecture 2: row sums give A286015.
Trapezoidal interpretation from Peter Munn, Jun 18 2017: (Start)
There is one to one correspondence between nonzero T(n,k) and trapezoidal area patterns of n dots on a triangular grid, if we include the limiting cases of triangular patterns, straight lines (k=1) or a single dot (k=n=1). The corresponding pattern has T(n,k) dots in its longest side, k dots in the two adjacent sides and T(n,k)-k+1 dots in the fourth side (where a count of 1 dot may be understood as signifying that side's absence).
Reason: From the definition, for k >= 1, m >= 0, T(A000217(k)+km,k) = k+m, where A000217(k) = k(k+1)/2, the k-th triangular number. First element of column k is T(A000217(k),k) = k: this matches a triangular pattern of A000217(k) dots with 3 sides of k dots. Looking at this pattern as k rows of 1..k dots, extend each row by m dots to create a trapezoidal pattern of A000217(k)+km dots with a longest side of k+m dots and adjacent sides of k dots: this matches T(A000217(k)+km,k) = k+m. As nonzero elements in column k occur at intervals of k, every nonzero T(n,k) has a match. Every trapezoidal pattern can be produced by extending a triangular pattern as described, so they all have a match.
The truth of conjecture 1 follows, since each nonzero T(n,k) = k+m corresponds to a trapezoidal pattern of n dots having k rows with lengths (1+m)..(k+m).
The A270877 sieve is related to this sequence because it eliminates n if it is the sum of consecutive numbers whose largest term has survived the sifting (which may likewise be seen in terms of a trapezoidal dot pattern and its longest side). So the sieve eliminates n if any lesser numbers in A270877 are in row n of this sequence.
(End)

Examples

			Triangle begins:
1;
2;
3,   2;
4,   0;
5,   3;
6,   0,  3;
7,   4,  0;
8,   0,  0;
9,   5,  4;
10,  0,  0,  4;
11,  6,  0,  0;
12,  0,  5,  0;
13,  7,  0,  0;
14,  0,  0,  5;
15,  8,  6,  0,  5;
16,  0,  0,  0,  0;
17,  9,  0,  0,  0;
18,  0,  7,  6,  0;
19, 10,  0,  0,  0;
20,  0,  0,  0,  6;
21, 11,  8,  0,  0,  6;
22,  0,  0,  7,  0,  0;
23, 12,  0,  0,  0,  0;
24,  0,  9,  0,  0,  0;
25, 13,  0,  0,  7,  0;
26,  0,  0,  8,  0,  0;
27, 14, 10,  0,  0,  7;
28,  0,  0,  0,  0,  0,  7;
...
In accordance with the conjecture, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The largest parts are 15, 8, 6, 5, respectively, so the 15th row of the triangle is [15, 8, 6, 0, 5].
		

Crossrefs

Row n has length A003056(n).
Column k starts in row A000217(k).
The number of positive terms in row n is A001227(n), the number of partitions of n into consecutive parts.
The last positive term in row n is in column A109814(n).

Programs

  • Mathematica
    With[{n = 7}, DeleteCases[#, m_ /; m < 0] & /@ Transpose@ Table[Apply[Join @@ {ConstantArray[-1, #2 - 1], Array[(k + #/k) Boole[Mod[#, k] == 0] &, #1 - #2 + 1, 0]} &, # (# + 1)/2 & /@ {n, k}], {k, n}]] // Flatten (* Michael De Vlieger, Jul 21 2017 *)

Formula

For k >= 1, m >= 0, T(A000217(k)+km,k) = k+m. - Peter Munn, Jun 19 2017

A066680 Badly sieved numbers: as in the Sieve of Eratosthenes multiples of unmarked numbers p are marked, but only up to p^2.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 23, 27, 29, 30, 31, 37, 41, 43, 45, 47, 50, 53, 59, 61, 63, 67, 70, 71, 73, 75, 79, 80, 83, 89, 97, 98, 101, 103, 105, 107, 109, 112, 113, 125, 127, 128, 131, 137, 139, 147, 149, 151, 154, 157, 163
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 31 2001

Keywords

Comments

A099104(a(n)) = 1.
a(A207432(n)) = A000040(n). - Reinhard Zumkeller, Feb 17 2012
Obviously all primes and cubes of primes are in the sequence, while squares of primes are not. In fact, A000225 tells us which exponents prime powers in the sequence will exhibit.
But where it gets really interesting is in what happens to the Achilles numbers: the smallest badly sieved numbers that are also Achilles numbers are 864 and 972. - Alonso del Arte, Feb 21 2012
From Peter Munn, Aug 09 2019: (Start)
The factorization pattern of a number's divisors (as defined in A191743) determines whether a number is a term.
There are no semiprimes in the sequence, and a 3-almost prime is present if and only if its largest prime factor is less than its square root. The first term that is a 4-almost prime is 220.
The effect of this sieve can be compared against the A270877 trapezoidal sieve. Each unmarked number k marks k-1 numbers in both sieves; but the largest number marked by k in this sieve is k^2, about twice the largest number marked by k in A270877 (the triangular number T_k = k(k+1)/2). The relative densities early in the two sequences are illustrated by a(10) = 18 < A270877(10) = 19, a(100) = 312 > A270877(100) = 268, a(1000) = 4297 > A270877(1000) = 2894. (End)

Examples

			For 2, the first unmarked number, there is only one multiple <= 4=2^2:
giving 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
for 3, the next unmarked number, we mark 6=2*3 and 9=3*3
giving 2 3 [4] 5 [6] 7 8 [9] 10 11 12 13 14 15 16 17 18 19 20 ...
for 5, the next unmarked number, we mark 10=2*5, 15=3*5, 20=4*5 and 25=5*5
giving 2 3 [4] 5 [6] 7 8 [9] [10] 11 12 13 14 [15] 16 17 18 19 [20] ... and so on.
		

Crossrefs

A066681, A066682, A066683, A099042, A099043, A207432 have analysis of this sequence.
Cf. A056875, A075362, A099104 (characteristic function), A191743.
Sequences generated by a closely related sieving process: A000040 (also a subsequence), A026424, A270877.

Programs

  • Haskell
    a066680 n = a066680_list !! (n-1)
    a066680_list = s [2..] where
       s (b:bs) = b : s [x | x <- bs, x > b ^ 2 || mod x b > 0]
    -- Reinhard Zumkeller, Feb 17 2012
  • Mathematica
    A099104[1] = 0; A099104[n_] := A099104[n] = Product[If[n > d^2, 1, 1 - A099104[d]], {d, Select[ Range[n-1], Mod[n, #] == 0 &]}]; Select[ Range[200], A099104[#] == 1 &] (* Jean-François Alcover, Feb 15 2012 *)
    max = 200; badPrimes = Range[2, max]; len = max; iter = 1; While[iter <= len, curr = badPrimes[[iter]]; badPrimes = Complement[badPrimes, Range[2, curr]curr]; len = Length[badPrimes]; iter++]; badPrimes (* Alonso del Arte, Feb 21 2012 *)

A136259 Stone skipping numbers.

Original entry on oeis.org

1, 3, 4, 5, 9, 13, 18, 19, 31, 32, 33, 38, 39, 55, 56, 57, 58, 59, 94, 95, 96, 97, 103, 104, 156, 157, 239, 244, 245, 249, 253, 254, 255, 256, 257, 258, 275, 276, 277, 419, 420, 609, 610, 787, 788, 789, 790, 791, 792, 1069, 1070, 1664, 1665, 1666, 1667, 1668, 1669, 1670
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 18 2008

Keywords

Comments

The sequence is generated by a sieving method with iterated selection of intervals of the natural numbers as if they were forming a chain of contact points on which a stone could re-bounce once launched at some specific position at the small numbers.
Image a stone with an initial kinetic energy t, which is diminished/dissipated by 1 unit each time it rebounds from the "water surface" of the residual sequence; it rebounds t times and sinks once it has slowed down to t=1. The numbers underneath the arcs of this flight, but not the contact points, are eliminated. We look at the limit of repeatedly skipping stones each time starting at new launching points with larger initial t. In detail:
Start with the set of natural numbers. Let a(0)= t define t. Jump t positions to the right, erase t positions; from the last erased position jump t-1 positions to the right, erase t-1 positions; ...; jump 1 position to the right, erase 1 position. Go to the smallest i>t. Set t=i. Repeat.
Stone skipping sequences are a generalized case of scarce sequences; see A137292.

Examples

			Start with natural numbers
   1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,...
a(0)=1 set t=1 (jump 1 position to the right, erase 1 position) gives
   1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,...
i=3 set t=3 (jump 3 positions to the right, erase 3 positions; from the last erased position jump 2 positions to the right, erase 2 positions; from the last erased position jump 1 position to the right, erase 1 position) gives
   1,3,4,5,9,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,...
i=4 set t=4 (jump 4 positions to the right, erase 4 positions; from the last erased position jump 3 positions to the right, erase 3 positions; from the last erased position jump 2 positions to the right, erase 2 positions;from the last erased position jump 1 position to the right, erase 1 position ) gives
   1,3,4,5,9,13,18,19,23,27,28,...
i=5 set t=5, repeat procedure.
		

Crossrefs

Cf. A137292. Bisections are A238091, A238092.
Cf. A270877.

Programs

  • Maple
    nmax := 3000: a136259 := [seq(i,i=1..nmax)] : s := 1: t := op(s,a136259) : p := 1:
    while op(-1,a136259)>t do p := p+t ; outb := false; while t >= 1 do for eli from 1 to t do if p > nops(a136259) then outb := true; break; fi; a136259 := subsop(p=NULL,a136259) ; od: if outb then break; fi; t := t-1 ; p := p+t-1 ; od: print(a136259) ; s := s+1 ; p := s ; t := op(s,a136259) : od: # R. J. Mathar, Aug 17 2009

Extensions

Edited and corrected by R. J. Mathar, Aug 17 2009
Showing 1-5 of 5 results.