A271209 a(n) = n^5 + n + 1.
1, 3, 35, 247, 1029, 3131, 7783, 16815, 32777, 59059, 100011, 161063, 248845, 371307, 537839, 759391, 1048593, 1419875, 1889587, 2476119, 3200021, 4084123, 5153655, 6436367, 7962649, 9765651, 11881403, 14348935, 17210397, 20511179, 24300031, 28629183, 33554465
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n^5+n+1: n in[0..100]];
-
Maple
A271209:=n->n^5 + n + 1: seq(A271209(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
-
Mathematica
Table[n^5+n+1, {n, 0, 100}] (* Waldemar Puszkarz, Apr 02 2016 *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,3,35,247,1029,3131},40] (* Harvey P. Dale, Jul 24 2016 *)
-
PARI
for(n=0, 100, print1(n^5+n+1, ", ")) \\ Waldemar Puszkarz, Apr 02 2016
Formula
a(n) = A271208(n) + 2.
From Wesley Ivan Hurt, Apr 02 2016: (Start)
G.f.: (1-3*x+32*x^2+62*x^3+27*x^4+x^5) / (x-1)^6.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), n>5. (End)
a(n) = A131471(n) + 1. - Omar E. Pol, Apr 05 2016
Comments