cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014477 Expansion of (1 + 2*x)/(1 - 2*x)^3.

Original entry on oeis.org

1, 8, 36, 128, 400, 1152, 3136, 8192, 20736, 51200, 123904, 294912, 692224, 1605632, 3686400, 8388608, 18939904, 42467328, 94633984, 209715200, 462422016, 1015021568, 2218786816, 4831838208, 10485760000, 22682796032, 48922361856, 105226698752, 225754218496
Offset: 0

Views

Author

Keywords

Comments

The sequence 0,1,8,... has a(n) = n^2*2^(n-1) and is the binomial transform of the hexagonal numbers A000384 (with leading 0). - Paul Barry, Jun 09 2003
As 0,1,8,... this is n^2*2^(n-1), the binomial transform of the hexagonal numbers A000384 (include the leading 0). Partial sums are A036826. - Paul Barry, Jun 10 2003
Sequence gives total value of all possible sums of distinct odd integers with maximum term less than 2n+1. E.g., for a(3) we can have the sums 1, 3, 5, 1+3, 1+5, 3+5, 1+3+5, which sum to 1+3+5+4+6+8+9 = 36. - Jon Perry, Feb 06 2004
Number of edges on a partially truncated (n+1)-cube (column 2 of A271316).

Crossrefs

Programs

Formula

O.g.f.: (1 + 2*x)/(1 - 2*x)^3 (see the name).
a(n) = (n+1)^2*2^n = A007758(n+1)/2. - Henry Bottomley, Jun 13 2001
The binomial transform of 0, 1, 8, ... is A077616. - Paul Barry, Jul 24 2003
a(1)=1, a(n) = 2a(n-1) + (2n-1)*2^(n-1). - Jon Perry, Feb 06 2004
a(n) = sum of (n+1)-th row of the triangle in A118416. - Reinhard Zumkeller, Apr 27 2006
a(n) = Sum_{j=0..n} binomial(n,j)*n*j. - Zerinvary Lajos, Oct 19 2006
E.g.f.: exp(2*x)*(1 + 6*x + 8*x^2/2!). - Wolfdieter Lang, Jul 29 2017
Sum_{n>=0} 1/a(n) = Pi^2/6 - log(2)^2. - Daniel Suteu, Oct 31 2017
Sum_{n>=0} (-1)^n/a(n) = -2 * Li_2(-1/2) = -2 * A355234. - Amiram Eldar, Oct 01 2022

A134401 Row sums of triangle A134400.

Original entry on oeis.org

1, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Essentially the same sequence as A036289.
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 187, 190, 250 and 442, lead to this sequence. For the central square these vectors lead to the companion sequence 2*A001792, for n >= 1 and a(0)=1. - Johannes W. Meijer, Aug 15 2010
Number of vertices on a partially truncated n-cube (column 1 of A271316). - Vincent J. Matsko, Apr 07 2016

Examples

			a(3) = 24 = sum of row 3 terms of triangle A134400: (3 + 9 + 9 + 3).
a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5) = (1 + 3 + 15 + 5).
		

Crossrefs

Programs

  • GAP
    a:=Concatenation([1],List([1..30],n->n*2^n)); # Muniru A Asiru, Oct 28 2018
  • Maple
    1,seq(n*2^n,n=1..30); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    F = Function[x, x*2^x];F[Range[1, 10]] (* Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008 *)
    {1}~Join~Table[n 2^n, {n, 28}] (* or *) Total /@ Join[{{1}}, Table[n Binomial[n, k], {n, 28}, {k, 0, n}]] (* Michael De Vlieger, Apr 07 2016 *)
  • PARI
    x='x+O('x^99); Vec((1-2*x+4*x^2)/(1-2*x)^2) \\ Altug Alkan, Apr 07 2016
    

Formula

Binomial transform of repeats of (4n+1): [1, 1, 5, 5, 9, 9, 13, 13, ...].
a(n) = n*2^n, n > 1. - Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n > 2.
G.f.: (1 - 2*x + 4*x^2)/(1-2*x)^2. (End)
E.g.f.: 1-E(0) where E(k)=1 - (k+1)/(1 - 2*x/(2*x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 07 2012
a(n) = A097064(n+1) for n >= 1. - Georg Fischer, Oct 28 2018
E.g.f.: 1 + 2*exp(2*x)*x. - Stefano Spezia, Feb 12 2023

Extensions

More terms from Johannes W. Meijer, Aug 15 2010
Showing 1-2 of 2 results.