cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102276 a(n) = (a(n-1) * a(n-5) + a(n-3)^2) / a(n-6) with a(0) = ... = a(5) = 1, a(n) = a(5-n) for all n in Z.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50, 107, 239, 1103, 3775, 14463, 55283, 256666, 2059753, 9820288, 55075036, 503857819, 4083736906, 44590046729, 335845998321, 3581731774609, 68868876045617, 782035904796497, 11680434156713849, 194342679446776442
Offset: 0

Views

Author

Michael Somos, Jan 02 2005

Keywords

Comments

Sequence defined by recursion derived from a genus 2 curve.
Similar to the Somos-6 and Somos-7 sequences with many bilinear identities.
If a0 := a(n), a1 := a(n+1), ..., a5 := a(n+5), a6 := a(n+6) and a6 = (a5*a1 + a3^2)/a0 for all n in Z, then c := (a0^2*a1*a4*a5^2 + a0^2*a3*a4^3 + a1^3*a2*a5^2 + a0*a2^2*a3*a4^2 + a1^2*a2*a3^2*a5 + a0*a2*a3^3*a4 + a1*a2^3*a3*a5 + a2^3*a3^3)/(a0*a1*a2*a3*a4*a5) is constant. - Michael Somos, Jun 30 2024

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 4, 8, 17]; [1, 1, 1, 1, 1] cat [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-3)^2)/Self(n-6): n in [1..30]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    Join[{1, 1, 1, 1, 1}, RecurrenceTable[{a[n] == (a[n-1]*a[n-5] + a[n-3]^2)/a[n-6], a[6] == 1, a[7] == 2, a[8] == 3, a[9] == 4, a[10] == 8, a[11] == 17}, a, {n, 6, 60}]] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    {a(n) = my(an); if( n<0, a(5-n), n++; an = vector(n,i,1); for(k=7, n, an[k] = (an[k-1]*an[k-5] + an[k-3]^2) / an[k-6]); an[n])};
    

Formula

a(n) = A256858(2*n - 5) for all n in Z. - Michael Somos, Apr 13 2015
Let b(n) = A256916(n). Then 0 = a(n) * b(n) - a(n-2) * b(n+2) + a(n-3) * b(n+3) for all n in Z. - Michael Somos, Apr 13 2015
0 = a(n) * a(n+6) - a(n+1) * a(n+5) - a(n+3) * a(n+3) for all n in Z. - Michael Somos, Apr 13 2015
0 = a(n) * a(n+9) + a(n+2) * a(n+7) - a(n+3) * a(n+6) - 9 * a(n+4) * a(n+5) for all n in Z. - Michael Somos, Apr 13 2015

A271831 Somos's sequence {a(6,n)} defined in comment in A018896: a(0)=a(1)= ... = a(13) = 1; for n>=14, a(n) = (a(n-1)*a(n-13) + a(n-7)^2)/a(n-14).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 12, 21, 37, 62, 98, 147, 358, 609, 959, 1541, 2618, 4655, 8407, 28631, 81011, 186528, 376741, 706041, 1280174, 3598503, 8411236, 24021605, 74880071, 219318499, 580374907, 1400227135, 6308924342
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 14 select 1 else (Self(n-1)*Self(n-13) + Self(n-7)^2)/Self(n-14): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[n_ /; 0 <= n <= 14] = 1; a[n_]:= a[n] = (a[n-1]*a[n-13] + a[n-7]^2)/a[n -14]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 21 2018 *)
  • PARI
    {a(n) = if(n<= 14, 1, (a(n-1)*a(n-13) + a(n-7)^2)/a(n-14))};
    for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271835 Somos's sequence {a(5,n)} defined in comment in A018896: a(0)=a(1)= ... = a(11) = 1; for n>=12, a(n) = (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 11, 20, 36, 61, 97, 243, 425, 700, 1199, 2183, 4115, 14902, 43515, 102827, 214168, 418685, 1223440, 3053628, 9484929, 31351174, 95335734, 260010845, 1305343146, 4437434637, 12553187856, 35704506092
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 12 select 1 else (Self(n-1)*Self(n-11) + Self(n-6)^2 )/Self(n-12): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]= If[n>2k+1,(a[k,(n-1)]*a[k,(n-2k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2k-2)],1]; Map[a[5,#]&,Range[0,43]] (* Peter J. C. Moses, Apr 15 2016 *)
    RecurrenceTable[{Table[a[i]==1,{i,0,11}],a[n]==(a[n-1]a[n-11]+a[n-6]^2)/ a[n-12]},a,{n,50}](* Harvey P. Dale, Sep 24 2021 *)
  • PARI
    {a(n) = if(n< 12, 1, (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Extensions

More terms from Alois P. Heinz, Apr 15 2016

A271837 Somos's sequence {a(7,n)} defined in comment in A018896: a(0)=a(1)= ... = a(15) = 1; for n>=16, a(n) = (a(n-1)*a(n-15)+ a(n-8)^2)/a(n-16).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 22, 38, 63, 99, 148, 212, 505, 842, 1284, 1966, 3153, 5312, 9200, 15968, 51401, 141522, 319386, 631223, 1149722, 2003800, 3442200, 9402302, 20908517, 55671036, 164685883, 466783858
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 16 select 1 else (Self(n-1)*Self(n-15) + Self(n-8)^2 )/Self(n-16): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n] = If[n>2*k+1,(a[k,(n-1)]*a[k,(n-2*k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2*k-2)],1]; Map[a[7,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 15 2016 *)
  • PARI
    {a(n) = if(n< 16, 1, (a(n-1)*a(n-15) + a(n-8)^2)/a(n-16))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271838 Somos's sequence {a(8,n)} defined in comment in A018896: a(0)=a(1)= ... = a(17) = 1; for n>=18, a(n) = (a(n-1)*a(n-17)+ a(n-9)^2)/a(n-18).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 23, 39, 64, 100, 149, 213, 294, 688, 1130, 1683, 2484, 3800, 6100, 10143, 17082, 28584, 87352, 234714, 521145, 1013424, 1809100, 3067659, 5075784, 8375940, 22379904, 47848348
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 18 select 1 else (Self(n-1)*Self(n-17) + Self(n-9)^2 )/Self(n-18): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n] = If[n>2*k+1,(a[k,(n-1)]*a[k,(n-2*k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2*k-2)],1]; Map[a[8,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 15 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]== a[10]==a[11]==a[12]==a[13]==a[14]==a[15]==a[16]==a[17]==1,a[n]==(a[n-1]a[n-17]+ a[n-9]^2)/a[n-18]},a,{n,60}] (* Harvey P. Dale, Jun 30 2023 *)
  • PARI
    {a(n) = if(n< 18, 1, (a(n-1)*a(n-17) + a(n-9)^2)/a(n-18))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271839 Somos's sequence {a(9,n)} defined in comment in A018896: a(0)= a(1) = ... = a(19) = 1; for n >= 20, a(n) = (a(n-1)*a(n-19) + a(n-10)^2)/a(n-20).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 24, 40, 65, 101, 150, 214, 295, 395, 911, 1479, 2164, 3105, 4571, 7033, 11252, 18383, 30095, 48707, 141866, 372815, 816479, 1567804, 2757573, 4585139, 7385515
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 20 select 1 else (Self(n-1)*Self(n-19) + Self(n-10)^2 )/Self(n-20): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+1,(a[k,(n-1)]*a[k,(n-2k-1)]+(a[k,(n-k-1)])^2)/a[k,(n-2k-2)],1];
    Map[a[9,#]&,Range[0,70]] (* Peter J. C. Moses, Apr 15 2016 *)
  • PARI
    {a(n) = if(n< 20, 1, (a(n-1)*a(n-19) + a(n-10)^2)/a(n-20))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    
Showing 1-6 of 6 results.