cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A095268 Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 7, 20, 71, 240, 871, 3148, 11655, 43332, 162769, 614198, 2330537, 8875768, 33924859, 130038230, 499753855, 1924912894, 7429160296, 28723877732, 111236423288, 431403470222, 1675316535350, 6513837679610, 25354842100894, 98794053269694, 385312558571890, 1504105116253904, 5876236938019298, 22974847399695092
Offset: 0

Views

Author

Eric W. Weisstein, May 31 2004

Keywords

Comments

A002494 is the number of graphs on n nodes with no isolated points and A095268 is the number of these graphs having distinct degree sequences.
Now that more terms have been computed, we can see that this is not the self-convolution of any integer sequence. - Paul D. Hanna, Aug 18 2006
Is it true that a(n+1)/a(n) tends to 4? Is there a heuristic argument why this might be true? - Gordon F. Royle, Aug 29 2006
Previous values a(30) = 5876236938019300 from Lorand Lucz, Jul 07 2013 and a(31) = 22974847474172100 from Lorand Lucz, Sep 03 2013 are wrong. New values a(30) and a(31) independently computed Kai Wang and Axel Kohnert. - Vaclav Kotesovec, Apr 15 2016
In the article by A. Iványi, G. Gombos, L. Lucz, T. Matuszka: "Parallel enumeration of degree sequences of simple graphs II" is in the tables on pages 258 and 261 a wrong value a(31) = 22974847474172100, but in the abstract another wrong value a(31) = 22974847474172374. - Vaclav Kotesovec, Apr 15 2016
The asymptotic formula given below confirms that a(n+1)/a(n) tends to 4. - Tom Johnston, Jan 18 2023

Examples

			a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot):
  ()  .  (1,1)  (2,1,1)  (1,1,1,1)
                (2,2,2)  (2,2,1,1)
                         (2,2,2,2)
                         (3,1,1,1)
                         (3,2,2,1)
                         (3,3,2,2)
                         (3,3,3,3)
For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4).
(End)
		

Crossrefs

Cf. A002494, A004250, A007721 (analog for connected graphs), A271831.
Counting the same partitions by sum gives A000569.
Allowing isolated nodes gives A004251.
The version with half-loops is A029889, with covering case A339843.
Covering simple graphs are ranked by A309356 and A320458.
Graphical partitions are ranked by A320922.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A339659 is a triangle counting graphical partitions.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

a(n) ~ c * 4^n / n^(3/4) for some c > 0. Computational estimates suggest c ≈ 0.074321. - Tom Johnston, Jan 18 2023

Extensions

Edited by N. J. A. Sloane, Aug 26 2006
More terms from Gordon F. Royle, Aug 21 2006
a(21) and a(22) from Frank Ruskey, Aug 29 2006
a(23) from Frank Ruskey, Aug 31 2006
a(24)-a(29) from Matuszka Tamás, Jan 10 2013
a(30)-a(31) from articles by Kai Wang and Axel Kohnert, Apr 15 2016
a(0) = 1 and a(1) = 0 prepended by Gus Wiseman, Dec 31 2020

A102276 a(n) = (a(n-1) * a(n-5) + a(n-3)^2) / a(n-6) with a(0) = ... = a(5) = 1, a(n) = a(5-n) for all n in Z.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50, 107, 239, 1103, 3775, 14463, 55283, 256666, 2059753, 9820288, 55075036, 503857819, 4083736906, 44590046729, 335845998321, 3581731774609, 68868876045617, 782035904796497, 11680434156713849, 194342679446776442
Offset: 0

Views

Author

Michael Somos, Jan 02 2005

Keywords

Comments

Sequence defined by recursion derived from a genus 2 curve.
Similar to the Somos-6 and Somos-7 sequences with many bilinear identities.
If a0 := a(n), a1 := a(n+1), ..., a5 := a(n+5), a6 := a(n+6) and a6 = (a5*a1 + a3^2)/a0 for all n in Z, then c := (a0^2*a1*a4*a5^2 + a0^2*a3*a4^3 + a1^3*a2*a5^2 + a0*a2^2*a3*a4^2 + a1^2*a2*a3^2*a5 + a0*a2*a3^3*a4 + a1*a2^3*a3*a5 + a2^3*a3^3)/(a0*a1*a2*a3*a4*a5) is constant. - Michael Somos, Jun 30 2024

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 4, 8, 17]; [1, 1, 1, 1, 1] cat [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-3)^2)/Self(n-6): n in [1..30]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    Join[{1, 1, 1, 1, 1}, RecurrenceTable[{a[n] == (a[n-1]*a[n-5] + a[n-3]^2)/a[n-6], a[6] == 1, a[7] == 2, a[8] == 3, a[9] == 4, a[10] == 8, a[11] == 17}, a, {n, 6, 60}]] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    {a(n) = my(an); if( n<0, a(5-n), n++; an = vector(n,i,1); for(k=7, n, an[k] = (an[k-1]*an[k-5] + an[k-3]^2) / an[k-6]); an[n])};
    

Formula

a(n) = A256858(2*n - 5) for all n in Z. - Michael Somos, Apr 13 2015
Let b(n) = A256916(n). Then 0 = a(n) * b(n) - a(n-2) * b(n+2) + a(n-3) * b(n+3) for all n in Z. - Michael Somos, Apr 13 2015
0 = a(n) * a(n+6) - a(n+1) * a(n+5) - a(n+3) * a(n+3) for all n in Z. - Michael Somos, Apr 13 2015
0 = a(n) * a(n+9) + a(n+2) * a(n+7) - a(n+3) * a(n+6) - 9 * a(n+4) * a(n+5) for all n in Z. - Michael Somos, Apr 13 2015

A271341 Somos's sequence {a(4,n)} defined in comment in A018896.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 10, 19, 35, 60, 156, 284, 499, 930, 1836, 7116, 21586, 52869, 115344, 356076, 972840, 3350009, 11844969, 37689894, 215136930, 785604755, 2444023816, 7985904285, 36968693334, 230985863335, 1429813280831, 6838592493455, 27144055289355, 191201731942399
Offset: 0

Views

Author

Keywords

Comments

The sequence of the first differences begins from 9 zeros, 5 1's and 4 consecutive squares, beginning with 2^2.
A generalization see in the comment in A018896.

Crossrefs

Programs

  • Magma
    [n le 10 select 1 else (Self(n-1)*Self(n-9) + Self(n-5)^2 )/Self(n-10): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    k = 4; Set[#, 1] & /@ Map[a[k, #] &, Range[0, 2 k + 1]]; a[k_, n_] /;
    n >= 2 k + 2 := (a[k, n - 1] a[k, n - 2 k - 1] + a[k, n - k - 1]^2) / a[k, n - 2 k - 2]; Table[a[k, n], {n, 0, 42}] (* Michael De Vlieger, Apr 04 2016 *)
    a[n_ /; 0 <= n <= 10] = 1; a[n_]:= a[n] = (a[n-1]*a[n-9] + a[n-5]^2)/a[n -10]; Table[a[n], {n,0,40}] (* G. C. Greubel, Feb 21 2018 *)
  • PARI
    {a(n) = if(n< 10, 1, (a(n-1)*a(n-9) + a(n-5)^2)/a(n-10))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Extensions

More terms from Michael De Vlieger, Apr 04 2016

A271835 Somos's sequence {a(5,n)} defined in comment in A018896: a(0)=a(1)= ... = a(11) = 1; for n>=12, a(n) = (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 11, 20, 36, 61, 97, 243, 425, 700, 1199, 2183, 4115, 14902, 43515, 102827, 214168, 418685, 1223440, 3053628, 9484929, 31351174, 95335734, 260010845, 1305343146, 4437434637, 12553187856, 35704506092
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 12 select 1 else (Self(n-1)*Self(n-11) + Self(n-6)^2 )/Self(n-12): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]= If[n>2k+1,(a[k,(n-1)]*a[k,(n-2k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2k-2)],1]; Map[a[5,#]&,Range[0,43]] (* Peter J. C. Moses, Apr 15 2016 *)
    RecurrenceTable[{Table[a[i]==1,{i,0,11}],a[n]==(a[n-1]a[n-11]+a[n-6]^2)/ a[n-12]},a,{n,50}](* Harvey P. Dale, Sep 24 2021 *)
  • PARI
    {a(n) = if(n< 12, 1, (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Extensions

More terms from Alois P. Heinz, Apr 15 2016

A271837 Somos's sequence {a(7,n)} defined in comment in A018896: a(0)=a(1)= ... = a(15) = 1; for n>=16, a(n) = (a(n-1)*a(n-15)+ a(n-8)^2)/a(n-16).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 22, 38, 63, 99, 148, 212, 505, 842, 1284, 1966, 3153, 5312, 9200, 15968, 51401, 141522, 319386, 631223, 1149722, 2003800, 3442200, 9402302, 20908517, 55671036, 164685883, 466783858
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 16 select 1 else (Self(n-1)*Self(n-15) + Self(n-8)^2 )/Self(n-16): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n] = If[n>2*k+1,(a[k,(n-1)]*a[k,(n-2*k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2*k-2)],1]; Map[a[7,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 15 2016 *)
  • PARI
    {a(n) = if(n< 16, 1, (a(n-1)*a(n-15) + a(n-8)^2)/a(n-16))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271838 Somos's sequence {a(8,n)} defined in comment in A018896: a(0)=a(1)= ... = a(17) = 1; for n>=18, a(n) = (a(n-1)*a(n-17)+ a(n-9)^2)/a(n-18).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 23, 39, 64, 100, 149, 213, 294, 688, 1130, 1683, 2484, 3800, 6100, 10143, 17082, 28584, 87352, 234714, 521145, 1013424, 1809100, 3067659, 5075784, 8375940, 22379904, 47848348
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 18 select 1 else (Self(n-1)*Self(n-17) + Self(n-9)^2 )/Self(n-18): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n] = If[n>2*k+1,(a[k,(n-1)]*a[k,(n-2*k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2*k-2)],1]; Map[a[8,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 15 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]== a[10]==a[11]==a[12]==a[13]==a[14]==a[15]==a[16]==a[17]==1,a[n]==(a[n-1]a[n-17]+ a[n-9]^2)/a[n-18]},a,{n,60}] (* Harvey P. Dale, Jun 30 2023 *)
  • PARI
    {a(n) = if(n< 18, 1, (a(n-1)*a(n-17) + a(n-9)^2)/a(n-18))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271839 Somos's sequence {a(9,n)} defined in comment in A018896: a(0)= a(1) = ... = a(19) = 1; for n >= 20, a(n) = (a(n-1)*a(n-19) + a(n-10)^2)/a(n-20).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 24, 40, 65, 101, 150, 214, 295, 395, 911, 1479, 2164, 3105, 4571, 7033, 11252, 18383, 30095, 48707, 141866, 372815, 816479, 1567804, 2757573, 4585139, 7385515
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 20 select 1 else (Self(n-1)*Self(n-19) + Self(n-10)^2 )/Self(n-20): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+1,(a[k,(n-1)]*a[k,(n-2k-1)]+(a[k,(n-k-1)])^2)/a[k,(n-2k-2)],1];
    Map[a[9,#]&,Range[0,70]] (* Peter J. C. Moses, Apr 15 2016 *)
  • PARI
    {a(n) = if(n< 20, 1, (a(n-1)*a(n-19) + a(n-10)^2)/a(n-20))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    
Showing 1-7 of 7 results.