A272068 a(n) = (10^n-1)^5.
0, 59049, 9509900499, 995009990004999, 99950009999000049999, 9999500009999900000499999, 999995000009999990000004999999, 99999950000009999999000000049999999, 9999999500000009999999900000000499999999, 999999995000000009999999990000000004999999999, 99999999950000000009999999999000000000049999999999
Offset: 0
Examples
From _Seiichi Manyama_, Sep 18 2018: (Start) n| a(n) can be divided into 5 parts for n > 1. -+-------------------------------------------- 1| 5 9 04 9 2| 9 50 99 004 99 3| 99 500 999 0004 999 4| 999 5000 9999 00004 9999 (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (111111,-1122322110,1123333211000,-112232211000000,1111110000000000,-1000000000000000).
Programs
-
Magma
[(10^n-1)^5 : n in [0..10]]; // Wesley Ivan Hurt, Apr 19 2016
-
Maple
A272068:=n->(10^n-1)^5: seq(A272068(n), n=0..10); # Wesley Ivan Hurt, Apr 19 2016
-
Mathematica
(10^Range[0, 10] - 1)^5 (* Wesley Ivan Hurt, Apr 19 2016 *)
-
PARI
a(n) = (10^n-1)^5; \\ Michel Marcus, Apr 19 2016
-
Ruby
(0..n).each{|i| p ('9' * i).to_i ** 5}
Formula
a(n) = A002283(n)^5.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 59049*x*(1 + 49940*x + 78366000*x^2 + 4994000000*x^3 + 10000000000*x^4)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)*(1 - 100000*x)).
E.g.f.: -exp(x) + 5*exp(10*x) - 10*exp(100*x) + 10*exp(1000*x) - 5*exp(10000*x) + exp(100000*x). (End)
Comments