A273622 a(n) = (1/3)*(Lucas(3*n) - Lucas(n)).
1, 5, 24, 105, 451, 1920, 8149, 34545, 146376, 620125, 2626999, 11128320, 47140601, 199691245, 845906424, 3583318305, 15179181851, 64300049280, 272379384749, 1153817597625, 4887649790376, 20704416783605, 87705316964399, 371525684705280, 1573808055889201, 6666757908429845
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Peter Bala, Lucas sequences and divisibility sequences
- Spirit Karcher and Mariah Michael, Prime Factors and Divisibility of Sums of Powers of Fibonacci and Lucas Numbers, Amer. J. of Undergraduate Research (2021) Vol. 17, Issue 4, 59-69.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory, 7 (5) (2011), 1255-1277.
- Index entries for linear recurrences with constant coefficients, signature (5,-2,-5,-1).
Programs
-
Magma
[1/3*(Lucas(3*n) - Lucas(n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
-
Maple
#A273622 with(combinat): Lucas := n->fibonacci(n+1) + fibonacci(n-1): seq(1/3*(Lucas(3*n) - Lucas(n)), n = 1..24);
-
Mathematica
LinearRecurrence[{5,-2,-5,-1}, {1, 5, 24, 105}, 100] (* G. C. Greubel, Jun 02 2016 *) Table[1/3 (LucasL[3 n] - LucasL[n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-5,-2,5]^(n-1)*[1;5;24;105])[1,1] \\ Charles R Greathouse IV, Jun 07 2016
Formula
a(n) = (1/3)*( (2 + sqrt(5))^n + (2 - sqrt(5))^n - ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ).
a(n) = -a(-n).
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4).
O.g.f.: x*(1 + x^2)/((1 - x - x^2 )*(1 - 4*x - x^2)).
a(n) = Fibonacci(n) + Sum_{k=1..n} Fibonacci(n-k)*Lucas(3*k). - Yomna Bakr and Greg Dresden, Jun 16 2024
E.g.f.: (2*exp(2*x)*cosh(sqrt(5)*x) - 2*exp(x/2)*cosh(sqrt(5)*x/2))/3. - Stefano Spezia, Jun 17 2024
Comments