cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A114525 Triangle of coefficients of the Lucas (w-)polynomials.

Original entry on oeis.org

2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2005

Keywords

Comments

Unsigned version of A108045.
The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

Examples

			2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  0:    2
  1:    0  1
  2:    2  0  1
  3:    0  3  0  1
  4:    2  0  4  0  1
  5:    0  5  0  5  0  1
  6:    2  0  9  0  6  0  1
  7:    0  7  0 14  0  7  0  1
  8:    2  0 16  0 20  0  8  0  1
  9:    0  9  0 30  0 27  0  9  0  1
  10:   2  0 25  0 50  0 35  0 10  0  1
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  .... reformatted by _Wolfdieter Lang_, Feb 10 2023
		

Crossrefs

Cf. A108045 (signed version).
Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Programs

  • Maple
    Lucas := proc(n,x)
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
    end proc:
    A114525 := proc(n,k)
        coeftayl(Lucas(n,x),x=0,k) ;
    end proc:
    seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    row[n_] := CoefficientList[LucasL[n, x], x];
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)

Formula

From Peter Bala, Mar 18 2015: (Start)
The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
From Jeremy Dover, Jun 10 2016: (Start)
Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
From Peter Bala, Sep 03 2022: (Start)
L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
From Peter Bala, Nov 18 2022: (Start)
L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
For odd m, L(n, L(m,x)) = L(n*m, x).
For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - Wolfdieter Lang, Feb 10 2023

A215465 a(n) = (Lucas(4n) - Lucas(2n))/4.

Original entry on oeis.org

0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750, 392089501, 2687463360, 18420257701, 126254611990, 865362736876, 5931286406640, 40653646980451, 278644255208560, 1909856172864751, 13090349042248500
Offset: 0

Views

Author

R. J. Mathar, Aug 11 2012

Keywords

Comments

This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = 3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A085695 (case k = -3). - Peter Bala, Jan 17 2014
In general, for distinct integers r and s with r = s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. See A273622 for the case r = 3, s = 1. - Peter Bala, May 27 2016

Examples

			a(3) = 76 because the 12th (4 * 3rd) Lucas number is 22, the 6th (2 * 3rd) Lucas number is 18, and (322 - 18)/4 = 304/4 = 76.
		

Crossrefs

Programs

  • Magma
    [(Lucas(4*n) - Lucas(2*n))/4: n in [0..20]]; // Vincenzo Librandi, Dec 23 2012
    
  • Maple
    A215465 := proc(n)
        (A000032(4*n)-A000032(2*n))/4 ;
    end proc:
  • Mathematica
    Table[(LucasL[4n] - LucasL[2n])/4, {n, 0, 19}] (* Alonso del Arte, Aug 11 2012 *)
    CoefficientList[Series[-x*(x-1)*(1+x)/((x^2 - 7*x + 1)* (x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
    LinearRecurrence[{10,-23,10,-1},{0,1,10,76},50] (* G. C. Greubel, Jun 02 2016 *)
  • PARI
    {a(n) = my(w = quadgen(5)^(2*n)); (2*real(w^2-w) + imag(w^2-w))/4}; /* Michael Somos, Dec 29 2022 */

Formula

4*a(n) = A000032(4*n) - A000032(2*n).
a(n) = A056854(n)/4 - A005248(n)/4.
G.f.: -x*(x-1)*(1+x) / ( (x^2-7*x+1)*(x^2-3*x+1) ).
a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4). - G. C. Greubel, Jun 02 2016
a(n) = 2^(-2-n)*((7-3*sqrt(5))^n-(3-sqrt(5))^n-(3+sqrt(5))^n+(7+3*sqrt(5))^n). - Colin Barker, Jun 02 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Dec 29 2022

A273623 a(n) = Fibonacci(3*n) - (2 + (-1)^n)*Fibonacci(n).

Original entry on oeis.org

1, 5, 32, 135, 605, 2560, 10933, 46305, 196384, 831875, 3524489, 14929920, 63245753, 267913165, 1134902560, 4807524015, 20365009477, 86267563520, 365435291981, 1548008735625, 6557470308896, 27777889982155, 117669030432337, 498454011740160, 2111485077903025
Offset: 1

Views

Author

Peter Bala, May 29 2016

Keywords

Comments

This is a divisibility sequence: if n divides m then a(n) divides a(m). The sequence satisfies a linear recurrence of order 6. In general, for integers r and s, the sequence Fibonacci(r*n) - 2*Fibonacci((r - 2*s)*n) + Fibonacci((r - 4*s)*n) is a divisibility sequence of the sixth order. This is the case r = 3, s = 1. See A127595 (case r = 4, s = 1).

Crossrefs

Programs

  • Magma
    [Fibonacci(3*n)-(2+(-1)^n)*Fibonacci(n): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273623
    with(combinat):
    seq(fibonacci(3*n) - (2 + (-1)^n)*fibonacci(n), n = 1..25);
  • Mathematica
    LinearRecurrence[{4, 4, -12, -4, 4, 1}, {1, 5, 32, 135, 605, 2560}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[Fibonacci[3 n] - (2 + (-1)^n) Fibonacci[n], {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=fibonacci(3*n) - (2 + (-1)^n)*fibonacci(n) \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = Fibonacci(3*n) - 2*Fibonacci(n) + Fibonacci(-n).
a(2*n) = 5*Fibonacci(2*n)^3;
a(2n+1) = Fibonacci(2*n+1)*(5*Fibonacci(2*n+1)^2 - 4) = Fibonacci(2*n+1)*Lucas(2*n+1)^2.
O.g.f. x*(x^4 - x^3 + 8*x^2 + x + 1)/( (1 + x - x^2 )*(1 - x - x^2)*(1 - 4*x - x^2 ) ).
a(n) = 4*a(n-1) + 4*a(n-2) - 12*a(n-3) - 4*a(n-4) + 4*a(n-5) + a(n-6). - G. C. Greubel, Jun 02 2016

A273624 a(n) = (1/11)*(Fibonacci(4*n) + Fibonacci(6*n)).

Original entry on oeis.org

1, 15, 248, 4305, 76255, 1361520, 24384737, 437245935, 7843863784, 140737371825, 2525326494911, 45314438127840, 813129752279233, 14590988151618255, 261824431125415640, 4698247224097107345, 84306614992412658847, 1512820749915870503760, 27146466385039244529569
Offset: 1

Views

Author

Peter Bala, May 29 2016

Keywords

Comments

This is a divisibility sequence: if n divides m then a(n) divides a(m). More generally, if r is an even integer then the sequence Fibonacci(r*n) + Fibonacci((r + 2)*n) is a divisibility sequence. See A215466 for the case r = 2.
Also, the sequence s(n) := Fibonacci(4*n) + Fibonacci(6*n) + ... + Fibonacci((2*k + 2)*n) is a divisibility sequence when k is a positive integer that is not a multiple of 3.

Crossrefs

Programs

  • Magma
    [1/11*(Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273624
    with(combinat):
    seq(1/11*(fibonacci(4n) + fibonacci(6n)), n = 1..20);
  • Mathematica
    LinearRecurrence[{25,-128,25,-1},{1, 15, 248, 4305},100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/11 (Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=(fibonacci(4*n) + fibonacci(6*n))/11 \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = -a(-n).
a(n) = 25*a(n-1) - 128*a(n-2) + 25*a(n-3) - a(n-4).
O.g.f. (x^2 - 10*x + 1)/((x^2 - 7*x + 1)*(x^2 - 18*x + 1)).

A273625 a(n) = (1/12)*(Fibonacci(2*n) + Fibonacci(4*n) + Fibonacci(6*n)).

Original entry on oeis.org

1, 14, 228, 3948, 69905, 1248072, 22352707, 400808856, 7190208684, 129009258070, 2314882621811, 41538234954384, 745368939599413, 13375072472343218, 240005728531700340, 4306726622089196592, 77281063743045412517, 1386752354089549205976, 24884260852952644076119
Offset: 1

Views

Author

Peter Bala, May 31 2016

Keywords

Comments

This is a divisibility sequence, that is, if n divides m then a(n) divides a(m). The sequence satisfies a sixth-order linear recurrence. More generally, the sequence s(n) := Fibonacci(2*n) + Fibonacci(4*n) + ... + Fibonacci(2*k*n) is a divisibility sequence for k = 1,2,3,.... See A215466 for the case k = 2. Cf. A273623, A273624.
From Peter Bala, Aug 05 2019: (Start)
Let U(n;P,Q), where P and Q are integer parameters, denote the Lucas sequence of the first kind. Then, excluding the cases P = -1 and P = 0, the sequence ( U(n;P,1) + U(2*n;P,1) + U(3*n;P,1))/(P^2 + P) is a sixth-order linear divisibility sequence with o.g.f. x*(1 - 2*(P^2 - 2)*x + (3*P^3 - 3*P^2 - 8*P + 10)*x^2 - 2*(P^2 - 2)*x^3 + x^4)/((1 - P*x + x^2)*(1 - (P^2 - 2)*x + x^2)*(1 - P*(P^2 - 3)*x + x^2)). This is the case P = 3.
More generally, the sequence U(n;P,1) + U(2*n;P,1) + ... + U(k*n;P,1) is a linear divisibility sequence of order 2*k. See, for example, A215466 with P = 3, k = 2. (End)

Crossrefs

Programs

  • Magma
    [1/12*(Fibonacci(2*n)+Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273625
    with(combinat):
    seq(1/12*(fibonacci(2*n) + fibonacci(4*n) + fibonacci(6*n)), n = 1..20);
  • Mathematica
    LinearRecurrence[{28, -204, 434, -204, 28, -1},{1, 14, 228, 3948, 69905, 1248072}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/12 (Fibonacci[2 n] + Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    A001906(n)=fibonacci(2*n)
    a(n)=(A001906(n)+A001906(2*n)+A001906(3*n))/12 \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = -a(-n).
O.g.f.: x*(x^4 - 14*x^3 + 40*x^2 - 14*x + 1)/((x^2 - 3*x + 1)*(x^2 - 7*x + 1)*(x^2 - 18*x + 1)).
a(n) = 28*a(n-1) - 204*a(n-2) + 434*a(n-3) - 204*a(n-4) + 28*a(n-5) - a(n-6). - G. C. Greubel, Jun 02 2016

A037451 a(n) = Fibonacci(n) * Fibonacci(2*n).

Original entry on oeis.org

0, 1, 3, 16, 63, 275, 1152, 4901, 20727, 87856, 372075, 1576279, 6676992, 28284569, 119814747, 507544400, 2149990983, 9107510539, 38580029568, 163427634589, 692290558575, 2932589884016, 12422650070163, 52623190204271, 222915410823168, 944284833600625, 4000054745057907, 16944503814103696, 71778070001033487
Offset: 0

Views

Author

Gary W. Adamson, Feb 01 2000

Keywords

Comments

Let F(n) = Fibonacci(n), then abs(det([F(n), F(n+k); F(n+2k), F(n+3k)])) = a(k), independent of n. - R. M. Welukar, Aug 26 2014
From Joerg Arndt, Aug 26 2014: (Start)
This is a special case of Johnson's identity (relation 32 in the Mathworld link).
F(a)*F(b) - F(c)*F(d) = (-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)), where a+b = c+d and r arbitrary.
Here a = n, b = n+3*k, c = n+k, d = n+2*k, and r = c, so that
(-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)) =
(-1)^c*(F(a-c)*F(b-c) - F(c-c)*F(d-c)) =
(-1)^c*(F(a-c)*F(b-c) - 0) =
(-1)^c*(F(-k)*F(-2*k)), taking the absolute value gives a(k).
(End)
Let L(n) = A000032(n), then abs(det([L(n), L(n+k); L(n+2k), L(n+3k)])) = 5*a(k), independent of n. - M. N. Deshpande and R. M. Welukar, Aug 30 2014

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq((fibonacci(2*n)*fibonacci(n)), n=0..25); # Zerinvary Lajos, Jun 24 2006
  • Mathematica
    Table[Fibonacci[n]Fibonacci[2n],{n,0,40}] (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    concat([0], Vec( x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)) + O(x^66) ) ) \\ Joerg Arndt, Aug 26 2014

Formula

From Emanuele Munarini, Jul 18 2003: (Start)
G.f.: ( x + x^3 )/( 1 - 3 x - 6 x^2 + 3 x^3 + x^4 ).
a(n+4) = 3*a(n+3) + 6*a(n+2) - 3*a(n+1) - a(n).
(End)
G.f.: x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)). - Joerg Arndt, Aug 26 2014
a(n) = (1/5)*(Lucas(3*n) - (-1)^n*Lucas(n)) = (1/5)*(Lucas(3*n) - Lucas(-n)). In general, for r = s (mod 2) the sequence Lucas(r*n) - Lucas(s*n) is a divisibility sequence. Cf. A273622. - Peter Bala, May 27 2016
Lim_{n->infinity} a(n+1)/a(n) = 2 + sqrt(5) = A098317. - Ilya Gutkovskiy, Jun 01 2016
a(n) = (-(1/2*(-1-sqrt(5)))^n+(2-sqrt(5))^n-(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)/5. - Colin Barker, Jun 03 2016

A049673 a(n) = (F(3n) + F(n))/3, where F = A000045 (the Fibonacci sequence).

Original entry on oeis.org

0, 1, 3, 12, 49, 205, 864, 3653, 15463, 65484, 277365, 1174889, 4976832, 21082073, 89304891, 378301260, 1602509321, 6788337557, 28755857952, 121811766781, 516002920895, 2185823443596, 9259296684333, 39223010163217, 166151337308544, 703828359351025
Offset: 0

Views

Author

Keywords

Comments

This is an odd divisibility sequence, that is, if n divides m and n/m is odd then a(n) divides a(m). More generally, if r and s are positive integers such that r = s (mod 2) then the sequence Fibonacci(r*n) + Fibonacci(s*n) is an odd divisibility sequence. In the particular case that r is even and s = r + 2 then Fibonacci(r*n) + Fibonacci(s*n) is, in fact, a divisibility sequence. See for example A215466 and A273624. - Peter Bala, May 29 2016

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n)+Fibonacci(n))/3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2016
  • Maple
    with(combinat): A049673:=n->(fibonacci(3*n)+fibonacci(n))/3: seq(A049673(n), n=0..30); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Table[(Fibonacci[3 n] + Fibonacci[n])/3, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 01 2016 *)
    LinearRecurrence[{5,-2,-5,-1},{0,1,3,12},30] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    concat(0, Vec(x*(1-2*x-x^2)/((x^2+4*x-1)*(x^2+x-1)) + O(x^30))) \\ Colin Barker, Jun 02 2016
    

Formula

G.f.: x*(1-2*x-x^2) / ((x^2+4*x-1)*(x^2+x-1)). - R. J. Mathar, Oct 26 2015
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4) for n>3. - Wesley Ivan Hurt, Jun 01 2016
a(n) = ((-(1/2*(1-sqrt(5)))^n-(2-sqrt(5))^n+(1/2*(1+sqrt(5)))^n+(2+sqrt(5))^n))/(3*sqrt(5)). - Colin Barker, Jun 02 2016
G.f.: G(F(t)), where G(t) is g.f. of A001045 and F(t) is g.f. of A000129. - Oboifeng Dira, Dec 07 2016

A273626 A fourth-order divisibility sequence: a(n) = (1/14)*(Pell(4*n) + Pell(2*n)).

Original entry on oeis.org

1, 30, 995, 33660, 1142629, 38810970, 1318402631, 44786716920, 1521429030985, 51683794848150, 1755727563817259, 59643053188493940, 2026108079758297261, 68828031652259981010, 2338126968060165944975, 79427488882178225107440, 2698196495024745460575889
Offset: 1

Views

Author

Peter Bala, May 31 2016

Keywords

Comments

This is a divisibility sequence, that is, a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4.
A000129(n) = Pell(n) is the Lucas sequence U_n(2,-1). In general, if U(n) = U_n(P,Q) is the Lucas sequence with integer parameters P and Q then when Q = 1 or Q = -1 both U(4*n) + U(2*n) and U(4*n) - 2*U(2*n) are divisibility sequences of the fourth order. Cf. A127595, A215466 and A273627.

Crossrefs

Programs

  • Magma
    I:=[1,30,995,33660]; [n le 4 select I[n] else 40*Self(n-1)-206*Self(n-2)+40*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 04 2016
  • Maple
    #A273626
    A000129 := proc (n) option remember;
    if n <= 1 then n else 2*A000129(n-1) + A000129(n-2) end if
    end proc:
    seq(1/14*(A000129(4*n) + A000129(2*n)), n = 1..20);
  • Mathematica
    LinearRecurrence[{40,-206,40,-1},{1,30,995,33660},100] (* G. C. Greubel, Jun 02 2016 *)

Formula

a(n) = sqrt(2)/56*( (sqrt(2) + 1)^(4*n) - (sqrt(2) - 1)^(4*n) + (sqrt(2) + 1)^(2*n) - (sqrt(2) - 1)^(2*n) ).
a(n) = (A082405(n) + A001109(n))/7 .
a(n) = 1/14*Pell(2*n)*A081555(n).
a(n) = -a(-n).
a(n) = 40*a(n-1) - 206*a(n-2) + 40*a(n-3) - a(n-4) for n>4.
O.g.f.: x*(x^2 - 10*x + 1)/((x^2 - 6*x + 1)*(x^2 - 34*x + 1)).

A273627 A divisibility sequence: (1/8)*(Pell(4*n) - 2*Pell(2*n)).

Original entry on oeis.org

1, 48, 1715, 58752, 1998709, 67914000, 2307174311, 78376578048, 2662499775145, 90446634986352, 3072523201721819, 104375342876112000, 3545689138389464221, 120449055384533383248, 4091722194064948458575, 138998105543576763850752, 4721843866291934117429329
Offset: 1

Views

Author

Peter Bala, May 30 2016

Keywords

Comments

The sequence of Pell numbers A000129 is a well-known divisibility sequence of order 2, that is, the sequence satisfies a linear recurrence of order 2 and Pell(n) divides Pell(m) whenever n divides m. The linear combinations Pell(4*n) - 2*Pell(2*n) and Pell(4*n) + Pell(2*n) are also divisibility sequences, this time of order 4. Cf. A127595 and A273626.

Crossrefs

Programs

  • Magma
    I:=[1,48,1715,58752]; [n le 4 select I[n] else 40*Self(n-1)-206*Self(n-2)+40*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 02 2016
  • Maple
    #A273627
    A000129 := proc (n) option remember;
    if n <= 1 then n else 2*A000129(n-1)+A000129(n-2) end if
    end proc:
    seq(1/8*(A000129(4*n)-2*A000129(2*n)), n = 1..20);
  • Mathematica
    CoefficientList[Series[(x^2 + 8*x + 1)/((x^2 - 6*x + 1)*(x^2 - 34*x + 1)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jun 01 2016 *)
    LinearRecurrence[{40, -206, 40, -1}, {1, 48, 1715, 58752}, 20] (* Vincenzo Librandi, Jun 02 2016 *)

Formula

a(n) = A000129(4*n) - 2*A000129(2*n).
a(n) = A000129(2*n)*(A002203(2*n) - 2).
a(n) = -a(-n).
a(n) = 40*a(n-1) - 206*a(n-2) + 40*a(n-3) - a(n-4) for n>4.
O.g.f.: x*(x^2 + 8*x + 1)/((x^2 - 6*x + 1)*(x^2 - 34*x + 1)).
a(n) = ((17+12*sqrt(2))^(1-n)*(-1+2*(3+2*sqrt(2))^n+(17+12*sqrt(2))^(2*n)-2*(99+70*sqrt(2))^n))/(384+272*sqrt(2)). - Colin Barker, Jun 02 2016
Showing 1-9 of 9 results.