cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A273622 a(n) = (1/3)*(Lucas(3*n) - Lucas(n)).

Original entry on oeis.org

1, 5, 24, 105, 451, 1920, 8149, 34545, 146376, 620125, 2626999, 11128320, 47140601, 199691245, 845906424, 3583318305, 15179181851, 64300049280, 272379384749, 1153817597625, 4887649790376, 20704416783605, 87705316964399, 371525684705280, 1573808055889201, 6666757908429845
Offset: 1

Views

Author

Peter Bala, May 27 2016

Keywords

Comments

This is a divisibility sequence, that is, a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4. Cf. A273623.
More generally, for distinct integers r and s with r == s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. When r is even (resp. odd) the normalized sequence (Lucas(r*n) - Lucas(s*n))/(Lucas(r) - Lucas(s)), with initial term equal to 1, has the o.g.f. x*(1 - x^2)/( (1 - Lucas(r)*x + x^2)*(1 - Lucas(s)*x + x^2) ) (resp. x*(1 + x^2)/( (1 - Lucas(r)*x - x^2)*(1 - Lucas(s)*x - x^2) )) and belongs to the 3-parameter family of fourth-order divisibility sequences found by Williams and Guy, with parameter values P1 = (Lucas(r) + Lucas(s)), P2 = Lucas(r)*Lucas(s) and Q = 1 (resp. Q = -1). For particular cases see A004146 (r = 2, s = 0), A049684 (r = 4, s = 0), A215465 (r = 4, s = 2), A049683 (r = 6, s = 0), A049682 (r = 8, s = 0) and A037451 (r = 3, s = -1).

Crossrefs

Programs

  • Magma
    [1/3*(Lucas(3*n) - Lucas(n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273622
    with(combinat):
    Lucas := n->fibonacci(n+1) + fibonacci(n-1):
    seq(1/3*(Lucas(3*n) - Lucas(n)), n = 1..24);
  • Mathematica
    LinearRecurrence[{5,-2,-5,-1}, {1, 5, 24, 105}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/3 (LucasL[3 n] - LucasL[n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-5,-2,5]^(n-1)*[1;5;24;105])[1,1] \\ Charles R Greathouse IV, Jun 07 2016

Formula

a(n) = (1/3)*( (2 + sqrt(5))^n + (2 - sqrt(5))^n - ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ).
a(n) = -a(-n).
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4).
O.g.f.: x*(1 + x^2)/((1 - x - x^2 )*(1 - 4*x - x^2)).
a(n) = (A014448(n) - A000032(n))/3. - R. J. Mathar, Jun 07 2016
a(n) = Fibonacci(n) + Sum_{k=1..n} Fibonacci(n-k)*Lucas(3*k). - Yomna Bakr and Greg Dresden, Jun 16 2024
E.g.f.: (2*exp(2*x)*cosh(sqrt(5)*x) - 2*exp(x/2)*cosh(sqrt(5)*x/2))/3. - Stefano Spezia, Jun 17 2024

A273624 a(n) = (1/11)*(Fibonacci(4*n) + Fibonacci(6*n)).

Original entry on oeis.org

1, 15, 248, 4305, 76255, 1361520, 24384737, 437245935, 7843863784, 140737371825, 2525326494911, 45314438127840, 813129752279233, 14590988151618255, 261824431125415640, 4698247224097107345, 84306614992412658847, 1512820749915870503760, 27146466385039244529569
Offset: 1

Views

Author

Peter Bala, May 29 2016

Keywords

Comments

This is a divisibility sequence: if n divides m then a(n) divides a(m). More generally, if r is an even integer then the sequence Fibonacci(r*n) + Fibonacci((r + 2)*n) is a divisibility sequence. See A215466 for the case r = 2.
Also, the sequence s(n) := Fibonacci(4*n) + Fibonacci(6*n) + ... + Fibonacci((2*k + 2)*n) is a divisibility sequence when k is a positive integer that is not a multiple of 3.

Crossrefs

Programs

  • Magma
    [1/11*(Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273624
    with(combinat):
    seq(1/11*(fibonacci(4n) + fibonacci(6n)), n = 1..20);
  • Mathematica
    LinearRecurrence[{25,-128,25,-1},{1, 15, 248, 4305},100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/11 (Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=(fibonacci(4*n) + fibonacci(6*n))/11 \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = -a(-n).
a(n) = 25*a(n-1) - 128*a(n-2) + 25*a(n-3) - a(n-4).
O.g.f. (x^2 - 10*x + 1)/((x^2 - 7*x + 1)*(x^2 - 18*x + 1)).

A273625 a(n) = (1/12)*(Fibonacci(2*n) + Fibonacci(4*n) + Fibonacci(6*n)).

Original entry on oeis.org

1, 14, 228, 3948, 69905, 1248072, 22352707, 400808856, 7190208684, 129009258070, 2314882621811, 41538234954384, 745368939599413, 13375072472343218, 240005728531700340, 4306726622089196592, 77281063743045412517, 1386752354089549205976, 24884260852952644076119
Offset: 1

Views

Author

Peter Bala, May 31 2016

Keywords

Comments

This is a divisibility sequence, that is, if n divides m then a(n) divides a(m). The sequence satisfies a sixth-order linear recurrence. More generally, the sequence s(n) := Fibonacci(2*n) + Fibonacci(4*n) + ... + Fibonacci(2*k*n) is a divisibility sequence for k = 1,2,3,.... See A215466 for the case k = 2. Cf. A273623, A273624.
From Peter Bala, Aug 05 2019: (Start)
Let U(n;P,Q), where P and Q are integer parameters, denote the Lucas sequence of the first kind. Then, excluding the cases P = -1 and P = 0, the sequence ( U(n;P,1) + U(2*n;P,1) + U(3*n;P,1))/(P^2 + P) is a sixth-order linear divisibility sequence with o.g.f. x*(1 - 2*(P^2 - 2)*x + (3*P^3 - 3*P^2 - 8*P + 10)*x^2 - 2*(P^2 - 2)*x^3 + x^4)/((1 - P*x + x^2)*(1 - (P^2 - 2)*x + x^2)*(1 - P*(P^2 - 3)*x + x^2)). This is the case P = 3.
More generally, the sequence U(n;P,1) + U(2*n;P,1) + ... + U(k*n;P,1) is a linear divisibility sequence of order 2*k. See, for example, A215466 with P = 3, k = 2. (End)

Crossrefs

Programs

  • Magma
    [1/12*(Fibonacci(2*n)+Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273625
    with(combinat):
    seq(1/12*(fibonacci(2*n) + fibonacci(4*n) + fibonacci(6*n)), n = 1..20);
  • Mathematica
    LinearRecurrence[{28, -204, 434, -204, 28, -1},{1, 14, 228, 3948, 69905, 1248072}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/12 (Fibonacci[2 n] + Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    A001906(n)=fibonacci(2*n)
    a(n)=(A001906(n)+A001906(2*n)+A001906(3*n))/12 \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = -a(-n).
O.g.f.: x*(x^4 - 14*x^3 + 40*x^2 - 14*x + 1)/((x^2 - 3*x + 1)*(x^2 - 7*x + 1)*(x^2 - 18*x + 1)).
a(n) = 28*a(n-1) - 204*a(n-2) + 434*a(n-3) - 204*a(n-4) + 28*a(n-5) - a(n-6). - G. C. Greubel, Jun 02 2016
Showing 1-3 of 3 results.