cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A273623 a(n) = Fibonacci(3*n) - (2 + (-1)^n)*Fibonacci(n).

Original entry on oeis.org

1, 5, 32, 135, 605, 2560, 10933, 46305, 196384, 831875, 3524489, 14929920, 63245753, 267913165, 1134902560, 4807524015, 20365009477, 86267563520, 365435291981, 1548008735625, 6557470308896, 27777889982155, 117669030432337, 498454011740160, 2111485077903025
Offset: 1

Views

Author

Peter Bala, May 29 2016

Keywords

Comments

This is a divisibility sequence: if n divides m then a(n) divides a(m). The sequence satisfies a linear recurrence of order 6. In general, for integers r and s, the sequence Fibonacci(r*n) - 2*Fibonacci((r - 2*s)*n) + Fibonacci((r - 4*s)*n) is a divisibility sequence of the sixth order. This is the case r = 3, s = 1. See A127595 (case r = 4, s = 1).

Crossrefs

Programs

  • Magma
    [Fibonacci(3*n)-(2+(-1)^n)*Fibonacci(n): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273623
    with(combinat):
    seq(fibonacci(3*n) - (2 + (-1)^n)*fibonacci(n), n = 1..25);
  • Mathematica
    LinearRecurrence[{4, 4, -12, -4, 4, 1}, {1, 5, 32, 135, 605, 2560}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[Fibonacci[3 n] - (2 + (-1)^n) Fibonacci[n], {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=fibonacci(3*n) - (2 + (-1)^n)*fibonacci(n) \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = Fibonacci(3*n) - 2*Fibonacci(n) + Fibonacci(-n).
a(2*n) = 5*Fibonacci(2*n)^3;
a(2n+1) = Fibonacci(2*n+1)*(5*Fibonacci(2*n+1)^2 - 4) = Fibonacci(2*n+1)*Lucas(2*n+1)^2.
O.g.f. x*(x^4 - x^3 + 8*x^2 + x + 1)/( (1 + x - x^2 )*(1 - x - x^2)*(1 - 4*x - x^2 ) ).
a(n) = 4*a(n-1) + 4*a(n-2) - 12*a(n-3) - 4*a(n-4) + 4*a(n-5) + a(n-6). - G. C. Greubel, Jun 02 2016

A273625 a(n) = (1/12)*(Fibonacci(2*n) + Fibonacci(4*n) + Fibonacci(6*n)).

Original entry on oeis.org

1, 14, 228, 3948, 69905, 1248072, 22352707, 400808856, 7190208684, 129009258070, 2314882621811, 41538234954384, 745368939599413, 13375072472343218, 240005728531700340, 4306726622089196592, 77281063743045412517, 1386752354089549205976, 24884260852952644076119
Offset: 1

Views

Author

Peter Bala, May 31 2016

Keywords

Comments

This is a divisibility sequence, that is, if n divides m then a(n) divides a(m). The sequence satisfies a sixth-order linear recurrence. More generally, the sequence s(n) := Fibonacci(2*n) + Fibonacci(4*n) + ... + Fibonacci(2*k*n) is a divisibility sequence for k = 1,2,3,.... See A215466 for the case k = 2. Cf. A273623, A273624.
From Peter Bala, Aug 05 2019: (Start)
Let U(n;P,Q), where P and Q are integer parameters, denote the Lucas sequence of the first kind. Then, excluding the cases P = -1 and P = 0, the sequence ( U(n;P,1) + U(2*n;P,1) + U(3*n;P,1))/(P^2 + P) is a sixth-order linear divisibility sequence with o.g.f. x*(1 - 2*(P^2 - 2)*x + (3*P^3 - 3*P^2 - 8*P + 10)*x^2 - 2*(P^2 - 2)*x^3 + x^4)/((1 - P*x + x^2)*(1 - (P^2 - 2)*x + x^2)*(1 - P*(P^2 - 3)*x + x^2)). This is the case P = 3.
More generally, the sequence U(n;P,1) + U(2*n;P,1) + ... + U(k*n;P,1) is a linear divisibility sequence of order 2*k. See, for example, A215466 with P = 3, k = 2. (End)

Crossrefs

Programs

  • Magma
    [1/12*(Fibonacci(2*n)+Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273625
    with(combinat):
    seq(1/12*(fibonacci(2*n) + fibonacci(4*n) + fibonacci(6*n)), n = 1..20);
  • Mathematica
    LinearRecurrence[{28, -204, 434, -204, 28, -1},{1, 14, 228, 3948, 69905, 1248072}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/12 (Fibonacci[2 n] + Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    A001906(n)=fibonacci(2*n)
    a(n)=(A001906(n)+A001906(2*n)+A001906(3*n))/12 \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = -a(-n).
O.g.f.: x*(x^4 - 14*x^3 + 40*x^2 - 14*x + 1)/((x^2 - 3*x + 1)*(x^2 - 7*x + 1)*(x^2 - 18*x + 1)).
a(n) = 28*a(n-1) - 204*a(n-2) + 434*a(n-3) - 204*a(n-4) + 28*a(n-5) - a(n-6). - G. C. Greubel, Jun 02 2016

A049673 a(n) = (F(3n) + F(n))/3, where F = A000045 (the Fibonacci sequence).

Original entry on oeis.org

0, 1, 3, 12, 49, 205, 864, 3653, 15463, 65484, 277365, 1174889, 4976832, 21082073, 89304891, 378301260, 1602509321, 6788337557, 28755857952, 121811766781, 516002920895, 2185823443596, 9259296684333, 39223010163217, 166151337308544, 703828359351025
Offset: 0

Views

Author

Keywords

Comments

This is an odd divisibility sequence, that is, if n divides m and n/m is odd then a(n) divides a(m). More generally, if r and s are positive integers such that r = s (mod 2) then the sequence Fibonacci(r*n) + Fibonacci(s*n) is an odd divisibility sequence. In the particular case that r is even and s = r + 2 then Fibonacci(r*n) + Fibonacci(s*n) is, in fact, a divisibility sequence. See for example A215466 and A273624. - Peter Bala, May 29 2016

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n)+Fibonacci(n))/3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2016
  • Maple
    with(combinat): A049673:=n->(fibonacci(3*n)+fibonacci(n))/3: seq(A049673(n), n=0..30); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Table[(Fibonacci[3 n] + Fibonacci[n])/3, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 01 2016 *)
    LinearRecurrence[{5,-2,-5,-1},{0,1,3,12},30] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    concat(0, Vec(x*(1-2*x-x^2)/((x^2+4*x-1)*(x^2+x-1)) + O(x^30))) \\ Colin Barker, Jun 02 2016
    

Formula

G.f.: x*(1-2*x-x^2) / ((x^2+4*x-1)*(x^2+x-1)). - R. J. Mathar, Oct 26 2015
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4) for n>3. - Wesley Ivan Hurt, Jun 01 2016
a(n) = ((-(1/2*(1-sqrt(5)))^n-(2-sqrt(5))^n+(1/2*(1+sqrt(5)))^n+(2+sqrt(5))^n))/(3*sqrt(5)). - Colin Barker, Jun 02 2016
G.f.: G(F(t)), where G(t) is g.f. of A001045 and F(t) is g.f. of A000129. - Oboifeng Dira, Dec 07 2016
Showing 1-3 of 3 results.