A274230 Number of holes in a sheet of paper when you fold it n times and cut off the four corners.
0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, 1953, 3969, 8001, 16129, 32385, 65025, 130305, 261121, 522753, 1046529, 2094081, 4190209, 8382465, 16769025, 33542145, 67092481, 134193153, 268402689, 536821761, 1073676289, 2147385345
Offset: 0
Links
- Paolo P. Lava, Table of n, a(n) for n = 0..1000
- Philippe Gibone, Illustration of a(0)-a(4) (idealized).
- Talmon Silver, Illustration of alternating dragon.
- N. J. A. Sloane, Illustration for a(4) = 9 (scan of an actual cut-up piece of paper)
- N. J. A. Sloane, Illustration for a(5) = 21 (scan of an actual cut-up piece of paper)
- Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
Programs
-
Magma
[(2^Ceiling(n/2)-1)*(2^Floor(n/2)-1 ): n in [0..35]]; // Vincenzo Librandi, Jul 02 2016
-
Maple
A274230:=n->(1+2^n-2^((n-3)/2)*(3-3*(-1)^n+2*sqrt(2)+2*(-1)^n*sqrt(2))): seq(A274230(n), n=0..50); # Wesley Ivan Hurt, Jul 07 2016
-
Mathematica
Table[(2^Ceiling@ # - 1) (2^Floor@ # - 1) &[n/2], {n, 0, 31}] (* Michael De Vlieger, Jun 30 2016 *)
-
PARI
a(n)=2^n+1-(n%2+2)<<(n\2) \\ Charles R Greathouse IV, Jul 05 2016
Formula
u(0) = 0; v(0) = 0; u(n+1) = v(n); v(n+1) = 2u(n) + 1; a(n) = u(n)*v(n).
a(n) = (2^ceiling(n/2) - 1)*(2^floor(n/2) - 1).
Proof from Tom Karzes, Jul 05 2016: (Start)
Let r be the number of times you fold along one axis and s be the number of times you fold along the other axis. So r is ceiling(n/2) and s is floor(n/2), where n is the total number of folds.
When unfolded, the resulting paper has been divided into a grid of (2^r) by (2^s) rectangles. The interior grid lines will have diamond-shaped holes where they intersect (assuming diagonal cuts).
There are (2^r-1) internal grid lines along one axis and (2^s-1) along the other. The total number of internal grid line intersections is therefore (2^r-1)*(2^s-1), or (2^ceiling(n/2)-1)*(2^floor(n/2)-1) as claimed. (End)
From Colin Barker, Jun 22 2016, revised by N. J. A. Sloane, Jul 05 2016: (Start)
It follows that:
a(n) = (2^(n/2)-1)^2 for n even, a(n) = 2^n+1-3*2^((n-1)/2) for n odd.
a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4) for n>3.
G.f.: x^2 / ((1-x)*(1-2*x)*(1-2*x^2)).
a(n) = (1+2^n-2^((n-3)/2)*(3-3*(-1)^n+2*sqrt(2)+2*(-1)^n*sqrt(2))). (End)
a(n) = A079667(2^(n-1)) for n >= 1. - J. M. Bergot, Jan 18 2021
E.g.f.: cosh(x) + cosh(2*x) - 2*cosh(sqrt(2)*x) + sinh(x) + sinh(2*x) - 3*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Apr 06 2022
Comments