cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274977 a(n) = a(n-1) + 3*a(n-2) with n>1, a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 9, 27, 54, 135, 297, 702, 1593, 3699, 8478, 19575, 45009, 103734, 238761, 549963, 1266246, 2916135, 6714873, 15463278, 35607897, 81997731, 188821422, 434814615, 1001278881, 2305722726, 5309559369, 12226727547, 28155405654, 64835588295, 149301805257, 343808570142
Offset: 0

Views

Author

Bruno Berselli, Sep 13 2016

Keywords

Comments

a(n)/a(n+1) converges to 1/A209927 as n approaches infinity.

Examples

			Table of similar sequences (not extendable on the left side) where this recurrence can be applied to the first two terms:
----------------------------------------------------------------------
(*)      -  -  1, -1,  2, -1,  5,   2,  17,  23,   74,  143,  365, ...
A052533: -  -  1,  0,  3,  3, 12,  21,  57, 120,  291,  651, 1524, ...
(^)      -  0, 1,  1,  4,  7, 19,  40,  97, 217,  508, 1159, 2683, ...
A006138: -  -  1,  2,  5, 11, 26,  59, 137, 314,  725, 1667, 3842, ...
A105476: -  -  1,  3,  6, 15, 33,  78, 177, 411,  942, 2175, 5001, ...
(^)      0, 1, 1,  4,  7, 19, 40,  97, 217, 508, 1159, 2683, 6160, ...
A105963: -  -  1,  5,  8, 23, 47, 116, 257, 605, 1376, 3191, 7319, ...
A274977: -  -  1,  6,  9, 27, 54, 135, 297, 702, 1593, 3699, 8478, ...
A075118: -  2, 1,  7, 10, 31, 61, 154, 337, 799, 1810, 4207, 9637, ...
----------------------------------------------------------------------
(*) see version A140165.
(^) see A006130 and the signed versions A140167, A182228.
		

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    [n le 2 select 5*n-4 else Self(n-1)+3*Self(n-2): n in [1..40]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 32); Coefficients(R!((1 + 5*x)/(1- x-3*x^2))); // Marius A. Burtea, Jan 15 2020
    
  • Maple
    seq(coeff(series((1+5*x)/(1-x-3*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 15 2020
  • Mathematica
    RecurrenceTable[{a[n]==a[n-1] +3a[n-2], a[0]==1, a[1]==6}, a, {n,0,40}]
    Table[Round[Sqrt[3]^(n-1)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 5*Fibonacci[n, 1/Sqrt[3]])], {n,0,40}] (* G. C. Greubel, Jan 15 2020 *)
    LinearRecurrence[{1,3},{1,6},40] (* Harvey P. Dale, Jul 11 2023 *)
  • PARI
    v=vector(40); v[1]=1; v[2]=6; for(n=3, #v, v[n]=v[n-1]+3*v[n-2]); v
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    a = recur_gen2(1, 6, 1, 3)
    [next(a) for n in range(40)]
    

Formula

G.f.: (1 + 5*x)/(1 - x - 3*x^2).
a(n) = ((13 + 11*sqrt(13))*(1 + sqrt(13))^n + (13 - 11*sqrt(13))*(1 - sqrt(13))^n)/(26*2^n).
3*a(n) + a(n+1) = 9*A105476(n+1).
3*a(n) - a(n+1) = 27*A006130(n-3) with n>1, A006130(-1) = 0.
a(n+1) - a(n) = 27*A105476(n-3) with n>2.
a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 5*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020
E.g.f.: (1/13)*exp(x/2)*(13*cosh((sqrt(13)*x)/2) + 11*sqrt(13)*sinh((sqrt(13)*x)/2)). - Stefano Spezia, Jan 15 2020