cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A216785 Number of unlabeled graphs on n nodes that have exactly two non-isomorphic components.

Original entry on oeis.org

0, 0, 1, 2, 8, 28, 145, 1022, 12320, 274785, 12007355, 1019030127, 165091859656, 50502058491413, 29054157815353374, 31426486309136268658, 64001015806929213894372, 245935864212056913811498454, 1787577725208700551275529005084, 24637809253253259917745389824933448
Offset: 1

Views

Author

Geoffrey Critzer, Oct 15 2012

Keywords

Comments

Stated more precisely: Number of unlabeled graphs on n nodes that have exactly two connected components and these components are not isomorphic (and nonempty).

Examples

			a(4)=2 = 1*2 where 1*2=A001349(1)*A001349(3) counts graphs with a component of 1 node and a component with 3 nodes. There is no contribution with a component of 2 nodes and another component of 2 nodes because A001349(2)=1 means these components would be isomorphic. - _R. J. Mathar_, Jul 18 2016
a(5)=8 = 1*6 + 1*2 where 1*6=A001349(1)*A001349(4) counts graphs with a component of 1 node and a component with 4 nodes, and where 1*2 = A001349(2)*A001349(3) counts graphs with a component of 2 nodes and a component of 3 nodes. - _R. J. Mathar_, Jul 18 2016
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 48.

Crossrefs

Cf. A058915, A001349, A217955, A275165, A275166 (allows an empty component), A274934 (allows isomorphic components).

Programs

  • Mathematica
    Needs["Combinatorica`"]; max=25; A000088=Table[NumberOfGraphs[n], {n, 0, max}]; f[x_]=1-Product[1/(1-x^k)^a[k], {k, 1, max}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x, 0, max}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; cg=Table[a[n], {n, 1, max}]/.sol; Take[CoefficientList[CycleIndex[AlternatingGroup[2], s]-CycleIndex[SymmetricGroup[2], s]/.Table[s[j]->Table[Sum[cg[[i]] x^(k*i), {i, 1, max}], {k, 1, max}][[j]], {j, 1, 3}], x], {4, max}]  (* after code given by Jean-François Alcover in A001349 *)
  • PARI
    {c=[1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476, 50335907869219, 29003487462848061, 31397381142761241960, 63969560113225176176277, 245871831682084026519528568, 1787331725248899088890200576580, 24636021429399867655322650759681644];}
    for(n=0,19,print([n,sum(j=1,(n-1)\2,c[j]*c[n-j])+if(n%2==0,c[n/2]*(c[n/2]-1)/2)])); /* David Broadhurst, Jul 18 2016 */
    
  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial, comb
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A216785(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        @lru_cache(maxsize=None)
        def d(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n
        return sum(d(i)*d(n-i) for i in range(1,n+1>>1)) + (0 if n&1 else comb(d(n>>1),2)) # Chai Wah Wu, Jul 03 2024

Formula

O.g.f.: A(x)^2/2 - A(x^2)/2 where A(x) is the o.g.f. for A001349 after setting A001349(0)=0.

Extensions

Two zeros prepended (offset changed), formula updated, and entries corrected by R. J. Mathar, N. J. A. Sloane, Jul 18 2016. (Thanks to Allan C. Wechsler for pointing out that all the entries above a(19) were wrong.)

A274934 Number of unlabeled graphs with n nodes that have two components, neither of which is the empty graph.

Original entry on oeis.org

0, 0, 1, 1, 3, 8, 30, 145, 1028, 12320, 274806, 12007355, 1019030239, 165091859656, 50502058492266, 29054157815353374, 31426486309136279775, 64001015806929213894372, 245935864212056913811759534, 1787577725208700551275529005084
Offset: 0

Views

Author

R. J. Mathar and N. J. A. Sloane, Jul 18 2016

Keywords

Examples

			a(6) = A216785(6)+2 =30 where the two additional graphs have two equal components (of which there are A001349(3)=2 choices).
		

Crossrefs

Cf. A001349, A216785 (non-isomorphic components), A275165, A275166, column 2 of A201922.

Programs

  • Mathematica
    terms = 20;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    A[x_] = Join[{1}, EULERi[Array[a88, terms]]].x^Range[0, terms] - 1;
    CoefficientList[(A[x]^2 + A[x^2])/2 + O[x]^terms, x] (* Jean-François Alcover, Sep 28 2018, after Andrew Howroyd in A001349 *)

Formula

G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A001349 without the initial constant 1.
a(n) = A201922(n,2). - R. J. Mathar, Jul 20 2016

A275165 Number of n-node graphs with two connected components.

Original entry on oeis.org

1, 1, 2, 3, 9, 29, 142, 998, 12145, 273400, 11991377, 1018707920, 165078860715, 50500999728875, 29053989521340327, 31426435300576595334, 64000986599534312456052, 245935832697890955733422940, 1787577661113111145804012336114, 24637809007125076355873926288686728
Offset: 0

Views

Author

R. J. Mathar, Jul 18 2016

Keywords

Comments

"Component" means there are no edges from a node of one component to any node of the other component.
Each of the 2 components may be the empty graph with 0 nodes. That means the graph has only one "visible" component in these cases.
Each of the 2 components must be a connected graph (see A001349). (The empty graph has all properties and is a connected graph.)
The graphs of the components may be the same (=isomorphic).

Examples

			a(4)=9 = 1*6 + 1*2 + 1*1 where 1*6=A001349(0)*A001349(4) counts graphs with an empty component and a component with 4 nodes, where 1*2 = A001349(1)*A001349(3) counts graphs with a component of 1 node and a component of 3 nodes, and where 1*1 = A001349(2)*A001349(2) counts graph with a component of 2 nodes and another component of 2 nodes (both components the same in that case).
		

Crossrefs

Cf. A216785, A001349, A275166, A274934 (no empty components).

Programs

  • Mathematica
    terms = 20;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++,c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] +
       Total[Quotient[v, 2]];
    a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    A[x_] = Join[{1}, EULERi[Array[a88, terms]]].(x^Range[0, terms]);
    CoefficientList[(A[x]^2 + A[x^2])/2 + O[x]^terms, x] (* Jean-François Alcover, May 28 2019, after Andrew Howroyd in A001349 *)
  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial, comb
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A275165(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        @lru_cache(maxsize=None)
        def d(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n if n else 1
        return sum(d(i)*d(n-i) for i in range(n+1>>1)) + (0 if n&1 else comb(d(n>>1)+1,2)) # Chai Wah Wu, Jul 03 2024

Formula

G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A001349.
a(n) = A275166(n) if n odd.

A000150 Number of dissections of an n-gon, rooted at an exterior edge, asymmetric with respect to that edge.

Original entry on oeis.org

0, 0, 1, 2, 7, 20, 66, 212, 715, 2424, 8398, 29372, 104006, 371384, 1337220, 4847208, 17678835, 64821680, 238819350, 883629164, 3282060210, 12233125112, 45741281820, 171529777432, 644952073662, 2430973096720, 9183676536076
Offset: 0

Views

Author

Keywords

Comments

Number of Dyck paths of length 2n having an odd number of peaks at even height. Example: a(3)=2 because we have UDU(UD)D and U(UD)DUD, where U=(1,1), D=(1,-1) and the peaks at even height are shown between parentheses. - Emeric Deutsch, Nov 13 2004
For n>=1, a(n) is the number of unordered binary trees with n internal nodes in which the left subtree is distinct from the right subtree. - Geoffrey Critzer, Feb 21 2013
Assuming offset -1 this is an analog of A275166: pairs of distinct Catalan numbers with index sum n. - R. J. Mathar, Jul 19 2016

References

  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.26).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

a(n) = T(2n+2, n), array T as in A051168, a count of Lyndon words.
Cf. A007595.
A diagonal of the square array described in A051168.

Programs

  • Mathematica
    nn=20;CoefficientList[Series[x/2(((1-(1-4x)^(1/2))/(2x))^2-(1-(1-4x^2)^(1/2))/(2x^2)),{x,0,nn}],x]  (* Geoffrey Critzer, Feb 21 2013 *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = 1+x*c(x^2). Then g.f. is (c(x)-d(x))/2.
G.f.: (sqrt(1-4*z^2) - sqrt(1-4*z) - 2*z)/(4*z). - Emeric Deutsch, Nov 13 2004
With c(x) defined as above: g.f. = x*(c(x)^2/2 - c(x^2)/2). - Geoffrey Critzer, Feb 21 2013
a(n) = ( 2^(n-3)/sqrt(Pi) ) * ( 4*2^n*GAMMA(n+1/2)/GAMMA(n+2) + ((-1)^n - 1)*GAMMA(n/2)/GAMMA(n/2 + 3/2) ) for n>0. - Mark van Hoeij, Nov 11 2009
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
a(2n) = A000108(2n) / 2; a(2n+1) = ( A000108(2n+1) - A000108(n) ) / 2. - John Bodeen, Jun 24 2015
D-finite with recurrence +n*(n+1)*(n-2)^2*a(n) -2*n*(2*n-5)*(n-1)^2*a(n-1) -4*n*(n-2)^3*a(n-2) +8*(2*n-5)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Oct 28 2021

Extensions

Additional comments from Clark Kimberling

A274937 Number of unlabeled forests on n nodes that have exactly two nonempty components.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 11, 23, 46, 99, 216, 488, 1121, 2644, 6334, 15437, 38132, 95368, 241029, 614968, 1582030, 4100157, 10697038, 28075303, 74086468, 196470902, 523383136, 1400051585, 3759508536, 10131097618, 27391132238, 74283552343, 202030012554, 550934060120, 1506161266348
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2016

Keywords

Crossrefs

Cf. A000055, A274935, A274936, A274938. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
          b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
          b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
        end:
    a:= proc(n) option remember; add(g(j)*g(n-j), j=1..n/2)-
          `if`(n::odd, 0, (t-> t*(t-1)/2)(g(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/ (n-1)];
    g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}] + If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
    a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 1, n/2}] - If[OddQ[n], 0, Function[t, t*(t-1)/2][g[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 14 2017, after Alois P. Heinz *)

Formula

G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A000055 without the initial constant 1.
a(n) = A095133(n,2). - R. J. Mathar, Jul 20 2016

A274935 Number of n-node unlabeled forests with two connected components.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 22, 46, 93, 205, 451, 1039, 2422, 5803, 14075, 34757, 86761, 219235, 558984, 1438033, 3726535, 9723913, 25525112, 67375200, 178723358, 476264352, 1274448596, 3423494617, 9229075121, 24961969420, 67721961268, 184255962564, 502658875034, 1374713691841, 3768527610094, 10353602341313
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2016

Keywords

Comments

One of the components may be empty (the null graph): a(n) = A000055(n) + A274937(n). - R. J. Mathar, Aug 15 2017

Crossrefs

Cf. A000055, A274936, A274937, A274938. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
          b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
          b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
        end:
    a:= proc(n) option remember; add(g(j)*g(n-j), j=0..n/2)-
          `if`(n::odd, 0, (t-> t*(t-1)/2)(g(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/ (n-1)];
    g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
    a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 0, n/2}]-If[OddQ[n], 0, Function[t, t*(t-1)/2][g[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)

Formula

G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A000055.

A274936 Number of n-node unlabeled forests that have 2 non-isomorphic components.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 11, 22, 44, 93, 202, 451, 1033, 2422, 5792, 14075, 34734, 86761, 219188, 558984, 1437927, 3726535, 9723678, 25525112, 67374649, 178723358, 476263051, 1274448596, 3423491458, 9229075121, 24961961679, 67721961268, 184255943244, 502658875034, 1374713643212
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2016

Keywords

Crossrefs

Cf. A000055, A274935-A274938. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
          b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
          b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
        end:
    a:= proc(n) option remember; add(g(j)*g(n-j), j=0..n/2)-
          `if`(n::odd, 0, (t-> t*(t+1)/2)(g(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)];
    g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
    a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 0, n/2}]-If[OddQ[n], 0, Function[t, t*(t+1)/2][g[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)

Formula

G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055.
a(2n+1) = A274935(2n+1). a(2n) = A274935(2n)-A000055(n). - R. J. Mathar, Jul 20 2016

A274938 Number of unlabeled forests with n nodes that have two components, neither of which is the empty graph.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 11, 21, 46, 96, 216, 482, 1121, 2633, 6334, 15414, 38132, 95321, 241029, 614862, 1582030, 4099922, 10697038, 28074752, 74086468, 196469601, 523383136, 1400048426, 3759508536, 10131089877, 27391132238, 74283533023, 202030012554, 550934011491, 1506161266348
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2016

Keywords

Crossrefs

Cf. A000055, A274935-A274937. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
          b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
          b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
        end:
    a:= proc(n) option remember; add(g(j)*g(n-j), j=1..n/2)-
          `if`(n::odd or n=0, 0, (t-> t*(t+1)/2)(g(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)];
    g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
    a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 1, n/2}]-If[OddQ[n] || n==0, 0, Function[t, t*(t+1)/2][g[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)

Formula

G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055 without the initial constant 1.
a(2n+1) = A274937(2n+1). a(2n) = A274937(2n)-A000055(n). - R. J. Mathar, Jul 20 2016

A275208 Expansion of (A(x)^2-A(x^2))/2 where A(x) = A001006(x).

Original entry on oeis.org

0, 1, 2, 6, 14, 38, 96, 256, 672, 1805, 4846, 13162, 35874, 98469, 271384, 751656, 2089640, 5831451, 16325950, 45847770, 129106738, 364498596, 1031480792, 2925337352, 8313200232, 23668977163, 67507731786, 192859753310, 551821286374, 1581188102590
Offset: 0

Views

Author

R. J. Mathar, Jul 19 2016

Keywords

Comments

Analog of A275166 with Motzkin numbers replacing connected graph counts.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          ((3*(n-1))*b(n-2)+(1+2*n)*b(n-1))/(n+2))
        end:
    a:= proc(n) option remember; add(b(j)*b(n-j), j=0..n/2)-
          `if`(n::odd, 0, (t-> t*(t+1)/2)(b(n/2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 19 2016
  • Mathematica
    b[n_] := b[n] = If[n<2, 1, ((3*(n-1))*b[n-2] + (1+2*n)*b[n-1])/(n+2)];
    a[n_] := a[n] = Sum[b[j]*b[n-j], {j, 0, n/2}] - If[OddQ[n], 0, Function[t, t*(t + 1)/2][b[n/2]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 16 2017, after Alois P. Heinz *)

Formula

a(2n+1) = A275207(2n+1).
Showing 1-9 of 9 results.